kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Jämförelse av datakomprimeringsalgoritmer för sensordata i motorstyrenheter
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Health Informatics and Logistics.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Health Informatics and Logistics.
2023 (Swedish)Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesisAlternative title
Comparison of data compression algorithms for sensordata in engine control units (English)
Abstract [sv]

Begränsad processor- och minneskapacitet är en stor utmaning för loggning avsensorsignaler i motorstyrenheter. För att kunna lagra större mängder data i dessakan komprimering användas. För att kunna implementera komprimering imotorstyrenheter krävs det att algoritmerna klarar de begränsningar som finnsgällande processorkapaciteten och ändå kan producera en godtagbarkomprimeringsgrad.Denna avhandling jämför komprimeringsalgoritmer och undersöker vilken ellervilka algoritmer som är bäst lämpade för detta ändamål. Detta i syfte att förbättraloggning och därmed effektivisera felsökning. Detta gjordes genom att utveckla ettsystem som kör olika komprimeringsalgoritmer på samplad sensordata frånmotorstyrenheter och beräknar komprimeringstid och komprimeringsgrad.Resultaten visade att delta-på-delta-komprimering presterade bättre än xorkomprimering för dessa data. Delta-på-delta presterade betydligt bättre gällandekomprimeringsgrad medan skillnaderna i komprimeringstid mellan algoritmernavar marginella. Delta-på-delta-komprimering bedöms ha god potential förimplementering i loggningssystem för motorstyrenheter. Algoritmen bedöms somväl lämpad för loggning av mindre tidsserier vid viktiga händelser, för merkontinuerlig loggning föreslås fortsatta studier för att undersöka hurkomprimeringsgraden kan förbättras ytterligare.

Abstract [en]

Limited processor and memory capacity is a major challenge for logging sensorsignals in engine control units. In order to be able to store larger amounts of data,compression can be used. To successfully implement compression algorithms inmotor control units, it is essential that the algorithms can effectively handle thelimitations associated with processor capacity while achieving an acceptable level ofcompression.This thesis compares compression algorithms on sensor data from motor controlunits in order to investigate which algorithm(s) are best suited to implement forthis application. The work aims to improve the possibilities of logging sensor dataand thus make the troubleshooting of the engine control units more efficient. Thiswas done by developing a system that performs compression on sampled sensorsignals and calculates the compression time and ratio.The results indicated that delta-of-delta compression performed better than xorcompression for the tested data sets. Delta-of-delta had a significantly bettercompression ratio while the differences between the algorithms regardingcompression time were minor. Delta-of-delta compression was judged to have goodpotential for implementation in engine control unit logging systems. The algorithmis deemed to be well suited for logging smaller time series during important events.For continuous logging of larger time series, further research is suggested in orderto investigate the possibility of improving the compression ratio further. 

Place, publisher, year, edition, pages
2023. , p. 92
Series
TRITA-CBH-GRU ; 2023:099
Keywords [en]
data compression, time-series data, embedded systems, engine control units, inverters
Keywords [sv]
datakomprimering, tidsseriedata, inbyggda system, motorstyrenheter, växelriktare
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-328399OAI: oai:DiVA.org:kth-328399DiVA, id: diva2:1764375
External cooperation
Inmotion Technologies AB
Subject / course
Embedded System Design
Educational program
Bachelor of Science in Engineering - Computer Engineering
Supervisors
Examiners
Available from: 2023-06-09 Created: 2023-06-08 Last updated: 2023-06-09Bibliographically approved

Open Access in DiVA

jämförelse av komprimeringsalgoritmer(3147 kB)81 downloads
File information
File name FULLTEXT01.pdfFile size 3147 kBChecksum SHA-512
48bf436faa0f6bc0e4ffd4af5923e0998c4d6cd258d37e207c252c04b442a0144aef33aac7efebc58f6cb6a91f71cb94f03c9ca751c5d392fc9a4e05b45b78d1
Type fulltextMimetype application/pdf

By organisation
Health Informatics and Logistics
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 81 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 331 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf