kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
TransRUnet: 2D Detection and Segmentation of Lymphoma Lesions in Full-Body PET-CT Images
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems.
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
TransRUnet: 2D-detektion och segmentering av lymfomlesioner i helkroppsundersökning med PET-CT (Swedish)
Abstract [en]

Identification and localization of FDG-avid lymphoma lesions in PET-CT image volumes is of high importance for the diagnosis and monitoring of treatment progress in lymphoma patients. This process is tedious, time-consuming, and error-prone, due to large image volumes and the heterogeneity of lesions. Thus, a fully automatic method for lymphoma detection is desirable. The AutoPET challenge dataset contains 145 full-body FDG-PET-CT images of lymphoma patients with pixel-level segmentation of lesions. The Retina U-Net utilizes semantic segmentation maps for object detection through simultaneous segmentation and detection. More recently, transformer-based methods became increasingly popular due to their good performance. Here, TransRUnet is proposed, a 2D deep neural network capable of segmentation and object detection, combining the Retina U-Net with a Feature Pyramid Transformer. Firstly, a Retina U-Net was trained as a Baseline on 2D axial slices of 116 patient volumes from the AutoPET dataset, achieving an mAP of 0.377 and a DSC of 0.737 on the 29 test patients. Secondly, the TransRUnet was trained on the same patients, achieving an mAP and DSC of 0.285 and 0.732, respectively. Performance comparison based on mAP and DSC did not show significant differences (p = 0.596 and p = 0.940, for mAP and DSC, respectively) between the Retina U-Net and the TransRUnet. Furthermore, a substantial difference in FROC between the two models could not be observed. The ground truth data should be preprocessed to reduce noise in the training data or a 3D generalization of the TransRUnet should be used to improve the detection performance.

Abstract [sv]

Att i PET-CT-bildvolymer identifiera och lokalisera lymfomlesioner med hög FDG-aviditet är av stor betydelse för diagnos och övervakning av behandlingseffekt hos lymfompatienter. Denna process är omständlig, tidskrävande och felbenägen på grund av stora bildvolymer och heterogeniteten hos lesionerna. Därför är det önskvärt med en helautomatisk metod för lymfomdetektion. AutoPET Challenge-datasetet innehåller 145 FDG-PET-CT-bilder av lymfom-patienter med segmentering av lesioner på pixelnivå. Retina U-Net använder semantiska segmenteringskartor för objektsdetektering genom samtidig segmentering och detektering. På senare tid har transformatorbaserade metoder blivit alltmer populära på grund av sina goda prestanda. Här föreslås TransRUnet, ett djupgående neuralt 2D-nätverk som kan segmentera och upptäcka objekt och som kombinerar Retina U-Net med en Feature Pyramid Transformer. I första steget tränades ett Retina U-Net som baslinje på 2D axialskivor av 116 patientvolymer från AutoPET-dataset, och uppnådde en mAP på 0,377 och en DSC på 0,737 på de 29 testpatienterna. I nästa steg tränades TransRUnet på samma patienter och uppnådde en mAP och DSC på 0,285 respektive 0,732. Jämförelse av prestanda baserat på mAP och DSC visade inga signifikanta skillnader (p = 0,596 och p = 0,940 för mAP respektive DSC) mellan Retina U-Net och TransRUnet. Dessutom kunde ingen väsentlig skillnad i FROC mellan de två modellerna observeras. Ground truth-data bör förbehandlas för att minska bruset i träningsdata eller också bör en 3D-generalisering av TransRUnet användas för att förbättra detektionsprestanda.

Place, publisher, year, edition, pages
2023. , p. 69
Series
TRITA-CBH-GRU ; 2023:064
Keywords [en]
Lymphoma, PET-CT, Deep Learning, CNN, Retina U-Net, Feature Pyramid Transformer, Detection, Segmentation
Keywords [sv]
Lymfom, PET-CT, djupinlärning, CNN, Retina U-Net, Feature Pyramid Transformer, detektion, segmentering
National Category
Medical Engineering Medical Imaging Computer graphics and computer vision
Identifiers
URN: urn:nbn:se:kth:diva-329327OAI: oai:DiVA.org:kth-329327DiVA, id: diva2:1770535
Subject / course
Medical Engineering
Educational program
Master of Science - Medical Engineering
Supervisors
Examiners
Available from: 2023-06-29 Created: 2023-06-19 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

fulltext(4943 kB)360 downloads
File information
File name FULLTEXT01.pdfFile size 4943 kBChecksum SHA-512
fad6a0e95d573cbe3c57137078d5a9194510ed2bfa5afc8b545f8be37e8babb0dd3d1f94c046ffceb145ac38f7f4772274e83e9b30203681d993fb1375758c1e
Type fulltextMimetype application/pdf

By organisation
Biomedical Engineering and Health Systems
Medical EngineeringMedical ImagingComputer graphics and computer vision

Search outside of DiVA

GoogleGoogle Scholar
Total: 360 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1153 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf