kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Map Based Sensor Fusion for Lane Boundary Estimation on ADAS
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Sensorfusion med Kartdata för Estimering av Körfältsgränser på ADAS (Swedish)
Abstract [en]

A vehicles ability to detect and estimate its surroundings is important for ensuring the safety of the vehicle and passengers regardless of the level of vehicle autonomy. With an improved road and lane estimation, advanced driver-assistance systems will be able to provide earlier and more accurate warnings and actions to prevent a possible accident. Current lane boundary estimations rely on camera and inertial sensor data to detect and estimate relevant lane boundaries in the vehicles surroundings. The current lane boundary estimation system struggles to provide correct estimations at distances exceeding 75 meters and has a performance which is affected by environmental effects. The methods in this thesis show how map data, together with sensor fusion with radar, camera, inertial measurement unit and global navigation satellite system data is able to provide an improvement to the lane boundary estimations. The map based estimation system is implemented and evaluated for high speed roads (highways and country roads) where lane boundary estimations for distances above 75 meters are needed. The results are conducted in a simulate environment and show how the map based system is able to correct unreliable sensor input to provide more precise boundary estimations. The map based system is also able to provide an up to 36% relative increase in correctly identified objects within ego vehicles lane between 12.5-150 meters in front of ego vehicle. The results indicate the ability to extend the horizon in which driver-assistance functions are able to operate, thus increasing the safety of future autonomous or semi-autonomous vehicles. Future work within the subject is needed to apply map based estimations on urban areas. The precision of such an system also relies on precise positional data. Incorporation of more precise global navigation data would be able to show an increased performance.

Abstract [sv]

Ett fordons förmåga att upptäcka och uppskatta sin omgivning är viktig för att säkerställa fordonets och passagerarnas säkerhet oavsett fordonets autonominivå. Med en förbättrad väg- och körfältsuppskattning kommer avancerade förarassistanssystem att kunna ge tidigare och mer exakta varningar och åtgärder för att förhindra en eventuell olycka. Aktuella estimeringar av körfältsgränser är beroende av kamera och tröghetssensordata för att upptäcka och uppskatta relevanta körfältsgränser i fordonets omgivning. Det nuvarande estimerings-systemet upvisar inkorrekta uppskattningar på avstånd över 75 meter och har en prestanda som påverkas av den omgivande miljön. Metoderna i detta examensarbete visar hur kartdata, tillsammans med sensorfusion av radar, kamera, tröghetsmätenhet och globala satellitnavigeringsdata, kan ge en förbättrad estimering av körfältsgränser. Det kartbaserade systemet är implementerat och utvärderat för höghastighetsvägar (motorvägar och landsvägar) där estimeringar av körfältsgränser för avstånd över 75 meter behövs. Resultaten utförs i en simulerad miljö och visar hur det kartbaserade systemet kan korrigera opålitlig sensorinmatning för att ge mer exakta gränsuppskattningar. Systemet kan också ge en upp till 36% relativ ökning av korrekt identifierade objekt inom ego-fordonets körfält mellan 12.5-150 meter framför ego-fordonet. Resultaten indikerar förmågan att förlänga horisonten som förarassistansfunktioner kan fungera i, vilket ökar säkerheten för framtida autonoma eller halvautonoma fordon. Framtida arbeten inom ämnet behövs för att tillämpa kartbaserade uppskattningar på tätorter. Precisionen hos ett sådant system är också beroende av mer exakt positionsdata. Inkorporering av mer exakt global navigationsdata skulle i detta fall kunna visa en ökad sytemprestanda.

Place, publisher, year, edition, pages
2023. , p. 89
Series
TRITA-EECS-EX ; 2023:246
Keywords [en]
Lane estimation, Lane detection, Map-matching, Sensor fusion, Smart camera, Vehicle Radar, Intelligent vehicle systems
Keywords [sv]
Körfältsestimering, Körfältsdetektering, Kartmatchning, Sensorfusion, Smart Kamera, Radar system, Fordonsradar, Intelligenta fordonssystem
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-329343OAI: oai:DiVA.org:kth-329343DiVA, id: diva2:1770609
External cooperation
Scania AB
Supervisors
Examiners
Available from: 2023-06-29 Created: 2023-06-19 Last updated: 2023-06-29Bibliographically approved

Open Access in DiVA

fulltext(3865 kB)522 downloads
File information
File name FULLTEXT01.pdfFile size 3865 kBChecksum SHA-512
de0444eb412bf2333d09b01ddf87b6905e7a7dbd189504ea21ea38e502056a577aefed2033f78e093f82441fafc91e906f4d7f12be4663f36036e28e565131c3
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 522 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 350 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf