kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Development of a Digital Coaching Application with Automated Mistake Identification using a Multi-Sensor Configuration
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems.
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Utveckling av en digital träningsapplikation med automatiserad felidentifiering med hjälp av en multisensorkonfiguration (Swedish)
Abstract [en]

Home-based exercise is a popular physical activity of maintaining fitness, health andwellness in general. However, without proper supervision and basic knowledge of theexercises in the workout plan, there is an increased risk of injury. Considering that noteveryone is willing to attend crowded gyms or schedule professional personal trainingsessions, in this study, a novel feedback system is proposed, in the form of a mobileapplication. Accelerometer and gyroscope data were collected from 10 volunteersperforming 3 exercises, squats, lunges and bridges, with inertial sensors attachedto their back lumbar region, on both shanks and on both thighs. Each participantperformed 5 repetitions of the correct technique and 5 repetitions of 4 mistakes foreach exercise. The accuracies of 3 classifiers, a SVM, a RF and DT were comparedwith the SVM performing the best across all 3 exercises. The best location and numberof sensors was determined by examining the accuracy of a SVM model for 15 uniquemulti-sensor configurations. The best performing setup, being the configuration with 2sensors, one at the lumbar area and one at the shank, was used in exploring the efficacyof different data processing techniques. Time-domain statistical features, sensor angletimeseries and the filtered signal timeseries were evaluated as input to a NN. The timedomainfeatures performed the best achieving the highest accuracy in all 3 exercises,with an accuracy of 67% for the squats, 87% for the lunges and 75% for the hip bridges.Overall, the final model demonstrated promising capabilities of classifying exercisetechnique of basic lower-body exercises, with a real-time feedback implementationbeing a feasible solution for self-efficient fitness.

Abstract [sv]

Hemmaträning är en populär typ av fysisk aktivitet för att upprätthålla kondition,hälsa och välbefinnande. Dock utan övervakning och basal kunskap om hur olikaövningar bör utföras så finns det en ökad risk för skador. Alla människor går intefrivilligt till trånga och fullsatta gym eller bokar in pass med personlig tränare. Därförföreslås i denna studie ett nytt återkopplingssytem vid träning som kan användas via enmobilapp. Data från en accelerometer och ett gyroskop har samlats in från tio frivilligapersoner. De har utfört tre olika styrkeövningar; knäböj, utfallssteg och höftlyft medtröghetssensorer placerade på deras ländrygg, på underbenen och på låren. Varjedeltagare utförde fem repetitioner med korrekt teknik och sedan fem repetitionermed fyra olika typer av felaktig teknik för varje styrkeövning. Noggrannheten förtre klassificerare, SVM, RF och DT jämfördes sedan med det SVM som presteradebäst i alla tre styrkeövningarna. Det optimala antalet sensorer tillsammans med bästplacering av dessa räknades ut genom att undersöka en SVM modell med 15 unikamultisensorkonfigurationer. Det visade sig att kombinationen med två sensorer, envid ländryggen och en på underbenet var den bästa och därför användes den föratt undersöka effektiviteten av olika databehandlingstekniker. Tidsdomänsstatistiskafunktioner, sensorvinkeltidsserier och filtrerade signaltidsserier utvärderades sominmatning till ett NN. Tidsdomänsfunktionerna presterade bäst och uppnådde högstnoggrannhet i alla tre övningarna. Detta med ett korrekt utfall av 67% för knöböj,87% för utfallsteg och 75% för höftlyft. Sammantaget visade den slutliga modellenen lovande förmåga att klassificera träningsteknik för basala styrkeövningar för nedredelen av kroppen. Samtidigt som användaren får feedback i realtid vilket gör detmöjligt att utföra effektiv träning själv hemma.

Place, publisher, year, edition, pages
2023. , p. 51
Series
TRITA-CBH-GRU ; 2023:050
Keywords [en]
Sports technology, wearable sensors, multi-sensor, IMU, bodyweight exercise, mobile application, mHealth
Keywords [sv]
Idrottsteknologi, bärbara sensorer, multisensor, kroppsviktsträning, mobilapplikation, mHälsa
National Category
Sport and Fitness Sciences Other Computer and Information Science Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-329769OAI: oai:DiVA.org:kth-329769DiVA, id: diva2:1773505
External cooperation
Wrlds Creations AB
Educational program
Master of Science - Sports Technology
Supervisors
Examiners
Available from: 2023-06-22 Created: 2023-06-22 Last updated: 2025-02-11Bibliographically approved

Open Access in DiVA

fulltext(8352 kB)306 downloads
File information
File name FULLTEXT01.pdfFile size 8352 kBChecksum SHA-512
e76b07afac26a558794a35dd590db2d8b132d95d55bad9a7b6b92375f7e88538c6b270dd87aace68e3ee3b82f4b46ccf773a563a805a09fac869f7acdca3095f
Type fulltextMimetype application/pdf

By organisation
Biomedical Engineering and Health Systems
Sport and Fitness SciencesOther Computer and Information ScienceSignal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 306 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 411 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf