kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Image-Based Classification Solutions for Robust Automated Molecular Biology Labs
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems.
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Bildbaserade klassificeringslösningar för robusta automatiserade molekylärbiologiska labb (Swedish)
Abstract [en]

Single-cell genomics (SCG) are methods for investigating heterogeneity between biological cells, among these is Smart-seq which sequences from RNA molecules. A more recent version of this method is Smart-seq3xpress which is currently in the process of being automated by the Sandberg lab at Karolinska Institutet. As part of this automated lab system, microwell plates are moved by a robot arm between molecular biology instuments. The purpose of this project was to create and integrate an image-based classification solution to validate the placement of these plates. This was done by building upon the VGG-16 convolutional neural network (CNN) model and specialising it through transfer learning to train models which classify microwell plate placement as correct or incorrect. These models were then integrated into the automated lab pipeline so that the system could self-correct or warn lab personnel of misplacement, removing the need for constant human supervision.

Abstract [sv]

Enskild cellgenomik (eng. single-cell genomics) är metoder för att undersöka heterogenitet mellan biologiska celler, bland dessa metoder är Smart-seq vilken sekvenserar från RNA molekyler. En nyare version av denna metod är Smart-seq3xpress vilken nu håller på att automatiseras av Sandberglabbet vid Karolinska Institutet. Som del av detta automatiserade labbsystem förflyttas mikrobrunnplattor av en robotarm mellan molekylärbiologiska mätinstrument. Syftet med detta projekt var att skapa samt integrera en bildbaserad klassificeringslösning för att säkerställa placeringen av dessa plattor. Detta gjordes genom att bygga på djupinlärningsmodellen VGG-16 och specialisera den med överförd inlärning för att kunna träna modeller vilka klassificerar om mikrobrunnplattornas placeringar är korrekta eller inkorrekta. Sedan integrerades dessa modeller som en del av det automatiserade labbsystemet sådan att systemet kunde självkorrigera eller varna labbpersonal vid felplaceringar, och därmed ta bort behovet av konstant mänsklig tillsyn.

Place, publisher, year, edition, pages
2023. , p. 56
Series
TRITA-CBH-GRU ; 2023:070
Keywords [en]
Neural networks, Deep learning, Transfer learning, TensorFlow, Single-cell genomics, Image classification
Keywords [sv]
Neurala nätverk, Djupinlärning, Överförd inlärning, TensorFlow, Enskild cellgenomik, Bildklassificering
National Category
Medical Engineering Computer graphics and computer vision Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-330385OAI: oai:DiVA.org:kth-330385DiVA, id: diva2:1777698
External cooperation
Karolinska Institutet
Subject / course
Medical Engineering
Educational program
Master of Science - Medical Engineering
Supervisors
Examiners
Available from: 2023-09-18 Created: 2023-06-29 Last updated: 2025-02-01Bibliographically approved

Open Access in DiVA

fulltext(2737 kB)166 downloads
File information
File name FULLTEXT01.pdfFile size 2737 kBChecksum SHA-512
024af5239a8e0ac6eb26e894847702a422a0c18dc8d7752d3ea0129351843eff459900469c7dcc20ae92f41dcfb37d5dff54e9de5ff9ae578392de97bf37d321
Type fulltextMimetype application/pdf

By organisation
Biomedical Engineering and Health Systems
Medical EngineeringComputer graphics and computer visionComputer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 166 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 470 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf