kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A comparison of neuron touch detection algorithms utilising voxelization and the data structures octree, k-d tree and R-tree
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
En jämförelse av synapsdetekteringsalgoritmer som bygger på voxelisering och datastrukturerna octree, k-d-träd och R-träd (Swedish)
Abstract [en]

Simulations of biologically detailed neuronal networks have become an essential tool in the study of the brain. An important step in the creation of these types of simulations is the detection of the connections between the nerve cells. This paper analyses the efficiency of four algorithms used for such purposes. Three of them are based on space-partitioning data structures commonly adopted for solving similar optimization problems, namely Octree, R tree and k-d tree. The fourth algorithm is instead based on the voxelization method used in a software product for computational neurobiologists. This study shows that the space-partitioning data structures are ideal for finding all the connections in a neuronal network. The voxelization algorithm has, however, more favourable scalability and could therefore prove to be preferable for brain regions with higher amounts of nerve cells. The findings of this study also indicate that an algorithm that uses a k-d tree is faster than the other three methods. Further research needs however to be done in order to ascertain and comprehend the underlying causes.

Abstract [sv]

Simuleringar av biologiskt detaljerade neuronala nätverk har blivit väsentliga i studiet av hjärnan. Ett viktigt steg i skapandet av dessa typer av simuleringar är att hitta kopplingarna mellan nervcellerna. Denna rapport analyserar effektiviteten hos fyra algoritmer som används för sådana ändamål. Tre av dem är tillämpade med datastrukturer som vanligtvis används för att lösa liknande optimeringsproblem, nämligen Octree, R-träd och k-d-träd. Den fjärde algoritmen grundar sig i stället på voxeliseringsmetoden som används i mjukvaruprodukten Snudda för neurovetenskap. Denna studie visar att octree, R-träd och k-d-träd är optimala för att hitta de flesta kopplingar mellan nervceller i ett simulerat neuronnätverk. Voxeliseringsalgoritmen har dock en bättre tidskomplexitet och kan därmed visa sig vara mer effektiv för hjärnregioner med många nervceller. Resultatet indikerar även att en algoritm som använder sig av k-d-träd presterar bättre än de andra tre metoderna. Ytterligare forskning behöver dock göras för att fastställa och förstå de bakomliggande orsakerna.

Place, publisher, year, edition, pages
2023. , p. 30
Series
TRITA-EECS-EX ; 2023:259
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-330747OAI: oai:DiVA.org:kth-330747DiVA, id: diva2:1778345
Supervisors
Examiners
Available from: 2023-07-27 Created: 2023-07-01 Last updated: 2023-07-27Bibliographically approved

Open Access in DiVA

fulltext(2831 kB)154 downloads
File information
File name FULLTEXT01.pdfFile size 2831 kBChecksum SHA-512
bdb0b3abf7663d1d4604af753b0fb84d7d5ac9ca119798a05f6521c77fd2188eac7e73c7338cdf4056565d4d6f0176bcfae6bd15197db5657d7774049a28f2e0
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 154 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 340 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf