Boids Flocking Algorithms: Prey Survival Rate in Predator-Prey Simulations
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE credits
Student thesisAlternative title
Boids flockalgoritmer : överlevnadstakt för byte i rovdjurs-bytessimuleringar (Swedish)
Abstract [en]
Virtual environments are only perceived as real as each part makes it out to be. One aspect of these simulated realities is the movement of the artificial life entities included in some of the virtual environments. These can for example be different kinds of so-called animats, simulations of animal behavior, which are types of artificial life programs to which the boid algorithm belongs. Boids, an algorithm for imitating animal flocking behavior, has different variations that have been introduced over the years. It has additionally been extended to simulate different scenarios, such as predator-prey simulations. Earlier work has been done in the field to generate results that provide the best possible parameters for the prey boids, in order to allow as many as possible to survive the predators. The parameters produced in that work are the ones belonging to the mathematical rules of the algorithm, making the so-called emergent behavior of the prey seemingly more intelligent. In this paper, the aim is to extend the work in the field, by examining how two different implementations, variations, of the boid flocking algorithm affect the emergent behavior, and in turn the survival rate of prey, in predator-prey simulations. It is also examined how changing the amount of neighboring boids taken into account in the calculations affect the survival rates. After the experiments, and evaluation of the results, it was found that a newer variation of the boids algorithm performed better than the original when it comes to emergent behavior and survival rates. It was also found that changing the amount of neighbors used in the calculations affects the emergent behavior, where more neighbors taken into account generally leads to higher survival rates.
Abstract [sv]
Virtuella miljöer framstår endast så verkliga som varje enskild del gör det till. En aspekt av dessa simulerade verkligheter är rörelserna utförda av artificiellt liv inkuderade i vissa virtuella miljöer. Dessa kan till exempel vara olika former av så kallade animats, simuleringar av djurs beteende, som boidsalgoritmen tillhör. Boids, en algoritm som imiterar flockbeteende hos djur, har olika variationer som har blivit introducerade genom åren. De har också blivit utökade till att simulera olika scenarion, som till exempel rovdjurs-bytessimuleringar. Tidigare arbete har utförts inom fältet för att generera resultat som ger de bästa möjliga värden på parametrarna för bytesdjurens boids, för att få så många som möjligt att överleva rovdjuren. Parametervärdena som producerats i det arbetet är de som tillhör de matematiska ekvationerna i algoritmen, vilket gör att det så kallade "emergent behavior" hos bytet framstå som mer intelligent. I den här uppsatsen är syftet att utöka arbetet i fältet genom att undersöka hur två olika implementationer, variationer, av boidsalgoritmen påverkar emergent behavior, och i sin tur överlevnaden för bytesdjur, i rovdjurs-bytessimuleringar. Det undersöks även hur överlevnaden påverkas när antalet grannar till boidsen, som används i beräkningarna, ändras. Efter experimenten, och utvärdering av resultaten, konstaterades det att en nyare variation av boidsalgoritmen presterar bättre än originalet när det kommer till emergent behavior och överlevnadsgrad. Det konstaterades även att emergent behavior påverkas genom att ändra antalet grannar som används i uträkningarna, och att fler grannar generellt leder till högre överlevnadsgrad.
Place, publisher, year, edition, pages
2023. , p. 22
Series
TRITA-EECS-EX ; 2023:273
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-330760OAI: oai:DiVA.org:kth-330760DiVA, id: diva2:1778360
Supervisors
Examiners
2023-07-272023-07-012023-07-27Bibliographically approved