kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CPU vs GPU performance when solving the flexible job-shop problem using genetic algorithms
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
CPU vs GPU-prestanda när man löser flexibla jobbbutiksproblem med hjälp av genetiska algoritmer (Swedish)
Abstract [en]

In this thesis, a comparison is made between the performance of genetic algorithms executed on the CPU and the GPU for solving the Flexible Job-shop Scheduling Problem (FJSP). The purpose is to determine whether one processing unit offers better performance than the other. The evaluation is based on execution time and makespan achieved on both processing units, as well as profiler data. The experimental setup includes an AMD Ryzen 5 3600 CPU, Nvidia GeForce GTX 1650 Max-Q and Nvidia GeForce GTX 1070 GPUs, as well as a benchmark dataset for FJSP with various problem sizes. The results obtained from the experiments shows that the GPU outperforms the CPU by a significant margin in terms of execution time, while the makespan remain very similar on all processing units.

Abstract [sv]

I denna avhandling görs en jämförelse mellan prestandan hos genetiska algoritmer som körs på CPU och GPU för att lösa problemet med flexibel schemaläggning för jobbshoppar (FJSP). Målet är att avgöra om en av processorenheterna erbjuder bättre prestanda än den andra. Utvärderingen baseras på exekveringstid och algorithmiska poäng som uppnås på båda processorenheterna, med hänsyn till profilerdata. Den experimentella uppställningen inkluderar en AMD Ryzen 5 3600 CPU, Nvidia GeForce GTX 1650 Max-Q och Nvidia GeForce GTX 1070 GPU:er, samt en benchmark-dataset för FJSP med olika problemstorlekar. Resultaten från experimenten visar att GPU:en överträffar CPU:en med betydande marginal vad gäller exekveringstid, medan de algorithmiska poängen förblir mycket lika på alla processorenheterna.

Place, publisher, year, edition, pages
2023. , p. 29
Series
TRITA-EECS-EX ; 2023:291
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-330839OAI: oai:DiVA.org:kth-330839DiVA, id: diva2:1779193
Supervisors
Examiners
Available from: 2023-08-01 Created: 2023-07-03 Last updated: 2023-08-01Bibliographically approved

Open Access in DiVA

fulltext(1940 kB)290 downloads
File information
File name FULLTEXT01.pdfFile size 1940 kBChecksum SHA-512
a926c00d6816e8d957148628b245f7edf7916807cc1b96273c2f1aed1e7d14103ff8e62998e19d1193e2052a179a9f2fa6620a9703eefa2a18b41cbe58e5d15b
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 290 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 306 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf