kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Effect of Noise on Grover's Algorithm when Searching with Multiple Marked Items
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Effekten av brus på Grovers algoritm vid sökning med flera markerade element (Swedish)
Abstract [en]

This thesis investigates the impact noise has on Grover’s algorithm when being used to search for multiple items in a database. The main metric being looked at is the probability of the algorithm successfully finding a correct item. The Qiskit framework was used to implement and evaluate the algorithm’s performance in noise-free and noisy environments. Results from the experiments show significant findings. In noiseless tests, the algorithm performs effectively and as expected. However, with the introduction of a noise model, the algorithm’s performance declines noticeably. The probability of it finding a marked item was close to the probability of randomly selecting the same item from the database. This was the case regardless of how many items were marked or the database size. These unexpected outcomes illustrate the disabling effect of noise on Grover’s algorithm. Limitations of the study include noise completely disrupting the algorithm, challenges in accurately modelling quantum noise, and the use of relatively small databases. Further research is needed to explore noise mitigation strategies and assess the algorithm’s robustness in larger-scale scenarios. This research strengthens our understanding of noise’s impact on Grover’s algorithm, showcasing the challenges and limitations of its implementation. It highlights the importance of properly managing noise in quantum computing to fully utilize its potential in efficiently solving complex problems.

Abstract [sv]

Denna avhandling undersöker effekten av brus på Grover’s algoritm för att söka efter flera markerade element i en databas. Huvudfokuset var att undersöka sannolikheten att algoritmen korrekt skulle hitta ett av flera markerade element i en databas. Qiskit-ramverket användes för att utvärdera algoritmens prestanda i brusfria och brusiga miljöer. Resultaten från experimenten var betydelsefulla. I brusfria tester presterar algoritmen effektivt och som förväntat. Men, med införandet av brus minskar algoritmens prestanda avsevärt. Sannolikheten för att algoritmen hittar ett markerat element liknar sannolikheten för att slumpmässigt välja ut samma element från databasen. Detta var fallet oavsett hur många element som var markerade och databasens storlek. Dessa oväntade resultat illustrerar brusets söndrande effekt på Grover’s algoritm. Begränsningar i studien inkluderar att bruset helt får algoritmen att sluta fungera, utmaningar med att noggrant modellera kvantbrus och användningen av relativt små databaser. Vidare forskning behövs för att undersöka strategier för att mitigera brus och bedöma algoritmens robusthet i storskaliga scenarier. Denna forskning stärker vår förståelse för brusets påverkan på Grover’s algoritm och betonar utmaningar och begränsningar vid dess implementering. Den betonar vikten av att hantera brus inom kvantdatorer för att kunna utnyttja deras potential för effektiv lösning av komplexa problem.

Place, publisher, year, edition, pages
2023. , p. 27
Series
TRITA-EECS-EX ; 2023:329
Keywords [en]
Quantum computing, Grover’s algorithm, Noise, Multiple marked items, Qiskit framework
Keywords [sv]
Kvantberäkning, Grover’s algoritm, Brus, Flera markerade objekt, Qiskitramverk
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-331001OAI: oai:DiVA.org:kth-331001DiVA, id: diva2:1779795
Supervisors
Examiners
Available from: 2023-08-01 Created: 2023-07-04 Last updated: 2023-08-01Bibliographically approved

Open Access in DiVA

fulltext(565 kB)381 downloads
File information
File name FULLTEXT01.pdfFile size 565 kBChecksum SHA-512
a486dbd56e8d09b4b79ae9916976f5f5fdec13ede5bb7e4627a615374dcb922c5cf5e86403c2bc4d71d3b13ee8cbff74c98e0f7a423758a98fed83d560cef345
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 382 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 507 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf