kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Searching for Situational Patterns in Cannabis Dealing, Possession and Use in a Scandinavian Context
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Urban and Regional Studies.ORCID iD: 0000-0001-5302-1698
2023 (English)In: International Criminology, ISSN 2662-9968Article in journal (Refereed) Published
Abstract [en]

Although cannabis is the most frequent illicit drug consumed in Sweden, little is known about the situations in which cannabis trade, possession and use occur. Following a recent strand of international research on the efect of recreational drugs on crime, this study uses a unique specially tailored database, Geographical Information Systems (GIS) and regression models, to investigate the situational conditions of cannabis ofenses as they are detected in Stockholm, Sweden. Cannabis coincides with the location of drug markets initially delimited by the police but also extends over to locations far from the radar of the police, such as private residences (comfort places). Modeling results indicate that several land uses (convergent public places) have signifcant predictive value of the geography of cannabis ofenses after controlling for other neighborhood characteristics. The article fnishes by stating new research questions and making recommendations for practice.

Place, publisher, year, edition, pages
Springer, 2023.
Keywords [en]
Marijuana · Recreational drugs · Narcotics · Hashish · Moran’s I · Spatial autoregressive models · GIS
National Category
Other Social Sciences
Identifiers
URN: urn:nbn:se:kth:diva-331455DOI: 10.1007/s43576-023-00095-0OAI: oai:DiVA.org:kth-331455DiVA, id: diva2:1781427
Funder
KTH Royal Institute of Technology
Note

QC 20230711

Available from: 2023-07-08 Created: 2023-07-08 Last updated: 2024-10-01Bibliographically approved
In thesis
1. Understanding crime patterns using spatial data analysis: Case studies in Stockholm, Sweden
Open this publication in new window or tab >>Understanding crime patterns using spatial data analysis: Case studies in Stockholm, Sweden
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Understanding the complex relationship between urban environments and crime is crucial for effective urban planning and crime prevention strategies. Spatial analytical methods have provided valuable knowledge into crime patterns, enabling the detection of crime-concentrated environments and informing law enforcement operations and urban planning interventions. The international literature highlights the increasing use of remote sensing in crime analysis, driven by improved data availability and accuracy. Given the potential of this approach, this thesis investigates the use of spatio-temporal data analyses, particularly the incorporation of remote sensing data along with traditional socio-demographic and land use indicators in understanding the dynamics of crime in urban environments. Four crime categories—cannabis-related crimes, street theft, residential burglaries, and sexual crimes—are investigated using Stockholm City in Sweden as a case study. Remote sensing data, particularly very high-resolution imagery, combined with machine learning algorithms, such as the Random Forest classifier, facilitate the prediction of crime risk areas and the identification of environmental factors associated with crime occurrences. While the thesis reflects upon the advantages and disadvantages of using remote sensing in crime analyses, findings offer practical insights for policymakers, urban planners, and law enforcement agencies, enabling the development of data-informed strategies to foster safer and more resilient urban environments.

Abstract [sv]

Förståelsen av det komplexa sambandet mellan urbana miljöer och brott är avgörande för effektiv stadsplanering och brottsförebyggande strategier. Rumsliga analytiska metoder har gett värdefulla insikter om brottsmönster, vilket möjliggör identifiering av miljöer med hög brottskoncentration och ger underlag för brottsbekämpningsinsatser och stadsplaneringsåtgärder. Den internationella litteraturen lyfter fram den ökande användningen av fjärranalys inom brottsanalys, vilket drivs av förbättrad dataåtkomst och noggrannhet. Med tanke på potentialen i denna metod utforskar denna avhandling användningen av spatio-temporala dataanalyser, särskilt införlivandet av fjärranalysdata tillsammans med konventionella socio-demografiska och markanvändningsindikatorer för att förstå dynamiken kring brott i urbana miljöer. Fyra brottskategorier – cannabisrelaterade brott, fickstölder, bostadsinbrott och sexualbrott – undersöks med Stockholms stad i Sverige som fallstudie. Fjärranalysdata, särskilt bilder med mycket hög upplösning, i kombination med machine learning-algoritmer som Random Forest-klassificeraren, underlättar prediktionen av brottsriskområden och identifieringen av miljöfaktorer som är förknippade med brottsförekomster. Även om avhandlingen reflekterar över fördelar och nackdelar med att använda fjärranalys i brottsanalys, erbjuder våra resultat praktiska insikter för beslutsfattare, stadsplanerare och brottsbekämpande myndigheter, vilket möjliggör utvecklingen av datainformerade strategier för att främja säkrare och mer motståndskraftiga urbana miljöer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 50
Series
TRITA-ABE-DLT ; 2423
Keywords
Exploratory spatial data analysis, random forest classifier, regression analysis, remote sensing data, spatial crime analysis, Utforskande rumslig dataanalys, random forest-klassificerare, regressionsanalys, fjärranalysdata, rumslig brottsanalys
National Category
Geosciences, Multidisciplinary
Research subject
Planning and Decision Analysis, Urban and Regional Studies
Identifiers
urn:nbn:se:kth:diva-354130 (URN)978-91-8106-075-1 (ISBN)
Public defence
2024-10-25, Kollegiesalen, Brinellvägen 8, KTH Campus, https://kth-se.zoom.us/s/66904913390, Stockholm, 09:00 (English)
Opponent
Supervisors
Projects
Development of remote sensing data use for safe environment planning
Funder
Swedish Research Council Formas, 2020-01999
Note

QC 241002

Available from: 2024-10-02 Created: 2024-10-01 Last updated: 2024-10-03Bibliographically approved

Open Access in DiVA

fulltext(1653 kB)139 downloads
File information
File name FULLTEXT01.pdfFile size 1653 kBChecksum SHA-512
d67c678e985f1ea9e7371241046922472920c2ff5bb5a176fd97e997c17a49c34bb4b9d3ed6fef8d44cc6ea20a451c05322ae6df1f1667a21a4a558e10cb8210
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Ceccato, VaniaIoannidis, Ioannis

Search in DiVA

By author/editor
Ceccato, VaniaIoannidis, IoannisMagnusson, Mia-Maria
By organisation
Urban and Regional Studies
Other Social Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 139 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 217 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf