kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting Workforce in Healthcare: Using Machine Learning Algorithms, Statistical Methods and Swedish Healthcare Data
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Predicering av Arbetskraft inom Sjukvården genom Maskininlärning, Statistiska Metoder och Svenska Sjukvårdsstatistik (Swedish)
Abstract [sv]

Denna studie undersöker användningen av maskininlärningsmodeller för att predicera arbetskraftstrender inom hälso- och sjukvården i Sverige. Med hjälp av en linjär regressionmodell, en Gradient Boosting Regressor-modell och en Exponential Smoothing-modell syftar forskningen för detta arbete till att ge viktiga insikter för underlaget till makroekonomiska överväganden och att ge en djupare förståelse av Beveridge-kurvan i ett sammanhang relaterat till hälso- och sjukvårdssektorn. Trots vissa utmaningar med datan är målet att förbättra noggrannheten och effektiviteten i beslutsfattandet rörande arbetsmarknaden. Resultaten av denna studie visar maskininlärningspotentialen i predicering i ett ekonomiskt sammanhang, även om inneboende begränsningar och etiska överväganden beaktas.

Abstract [en]

This study examines the use of machine learning models to predict workforce trends in the healthcare sector in Sweden. Using a Linear Regression model, a Gradient Boosting Regressor model, and an Exponential Smoothing model the research aims to grant needed insight for the basis of macroeconomic considerations and to give a deeper understanding of the Beveridge Curve in the healthcare sector’s context. Despite some challenges with data, the goal is to improve the accuracy and efficiency of the policy-making around the labor market. The results of this study demonstrates the machine learning potential in the forecasting within an economic context, although inherent limitations and ethical considerations are considered.

Place, publisher, year, edition, pages
2023. , p. 10
Series
TRITA-EECS-EX ; 2023:457
Keywords [en]
Machine Learning (ML), Linear Regression Model (LRM), Gradient Boosting Regressor (GBR), Exponential Smoothing Model (ESM), Workforce Prediction (WP), Healthcare Sector (HS), Labor Policy (LP), Beveridge Curve (BC), Economic Forecasting (EF), Recursive Feature Elimination (RFE), Human Resource Management (HRM)
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-331933OAI: oai:DiVA.org:kth-331933DiVA, id: diva2:1782709
Supervisors
Examiners
Available from: 2023-08-02 Created: 2023-07-16 Last updated: 2023-08-02Bibliographically approved

Open Access in DiVA

fulltext(2739 kB)376 downloads
File information
File name FULLTEXT01.pdfFile size 2739 kBChecksum SHA-512
ce2b50395cb4e8d46519fabaabaa74a670047c993056b698c2531df1b27a2bd2920d9de5a559fbc567fa4c3525ee3b859d74e146f5c2095c0168cc5a05cd66db
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 378 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 440 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf