kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting the threshold grade for university admission through Machine Learning Classification Models
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Förutspå tröskelvärdet för universitetsantagningsbetyg genom klassificeringsmodeller inom maskininlärning (Swedish)
Abstract [en]

Higher-level education is very important these days, which can create very high thresholds for admission on popular programs on certain universities. In order to know what grade will be needed to be admitted to a program, a student can look at the threshold from previous years. We explored whether it was possible to generate accurate predictions of what the future threshold would be. We did this by using well-established machine learning classification models and admission data from 14 years back covering all applicants to the Computer Science and Engineering Program at KTH Royal Institute of Technology. What we found through this work is that the models are good at correctly classifying data from the past, but not in a meaningful way able to predict future thresholds. The models could not make accurate future predictions solely based on grades of past applicants.

Abstract [sv]

Eftergymnasiala studier är väldigt viktiga numera, vilket kan leda till mycket höga antagningskrav på populära program på vissa universitet och högskolor. För att veta vilket betyg som krävs för att komma in på en utbildning så kan studenten titta på gränsen från tidigare år och utifrån det gissa sig till vad gränsen kommer vara kommande år. Vi undersöker om det är möjligt att, med hjälp av väletablerade, klassificerande Maskininlärnings-modeller kunna förutse antagningsgränsen i framtiden. Vi tränar modellerna på data med antagningsstatistik som sträcker sig tillbaka 14 år med alla ansökningar till civilingenjörs-programmet Datateknik på Kungliga Tekniska Högskolan. Det vi finner genom detta arbete är att modellerna är bra på att korrekt klassificera data från tidigare år, men att de inte, på ett meningsfullt sätt, kan förutse betygsgränsen kommande år. Modellerna kan inte göra detta endast genom data på betyg från tidigare år.

Place, publisher, year, edition, pages
2023. , p. 24
Series
TRITA-EECS-EX ; 2023:280
Keywords [en]
Admission data, Data Classification, Machine Learning, Logistic Regression, Support Vector Machine, Decision Tree Classifier, Random Forest
Keywords [sv]
Antagningsdata, Dataklassificering, Maskininlärning, Logistic Regression, Support Vector Machine, Decision Tree Classifier, Random Forest
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-333670OAI: oai:DiVA.org:kth-333670DiVA, id: diva2:1786172
Supervisors
Examiners
Available from: 2023-08-14 Created: 2023-08-08 Last updated: 2023-08-14Bibliographically approved

Open Access in DiVA

fulltext(556 kB)210 downloads
File information
File name FULLTEXT01.pdfFile size 556 kBChecksum SHA-512
6f3d070bd4af3c198b145e2cfd4da6f41cd20d8f0c7c81614d5e7da685d9588c6b1b64fd1c71b906c6605fe2fd5f9367b11b7b5e796d2bfba9598b7c5b07c9f5
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 212 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 427 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf