kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microsupercapacitors Working at 250 °C
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems, Integrated devices and circuits.ORCID iD: 0000-0002-5695-4861
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems, Electronic and embedded systems.ORCID iD: 0000-0001-5217-9936
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems, Electronic and embedded systems.ORCID iD: 0009-0008-3459-3138
Department of Physics Umeå University 901 87 Umeå Sweden.ORCID iD: 0000-0002-3881-6764
Show others and affiliations
2023 (English)In: Batteries & Supercaps, E-ISSN 2566-6223, Vol. 6, no 9Article in journal (Refereed) Published
Abstract [en]

The raised demand for portable electronics in high-temperature environments (>150 °C) stimulates the search for solutions to release the temperature constraints of power supply. All-solid-state microsupercapacitors (MSCs) are envisioned as promising on-chip power supply components, but at present, nearly none of them can work at temperature over 200 °C, mainly restricted by the electrolytes which possess either low thermal stability or incompatible fabrication process with on-chip integration. In this work, we have developed a novel process to fabricate highly thermally stable ionic liquid/ceramic composite electrolytes for on-chip integrated MSCs. Remarkably, the electrolytes enable MSCs with graphene-based electrodes to operate at temperatures as high as 250 °C with a high areal capacitance (~72 mF cm−2 at 5 mV s−1) and good cycling stability (70 % capacitance retention after 1000 cycles at 1.4 mA cm−2).

Place, publisher, year, edition, pages
Wiley , 2023. Vol. 6, no 9
Keywords [en]
microsupercapacitors, high-temperature electronics, solid electrolytes, ceramic matrix, ionic liquid
National Category
Engineering and Technology
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-334231DOI: 10.1002/batt.202300312ISI: 001041960000001Scopus ID: 2-s2.0-85166584858OAI: oai:DiVA.org:kth-334231DiVA, id: diva2:1789034
Funder
Swedish Energy Agency, 50620-1
Note

QC 20230825

Available from: 2023-08-17 Created: 2023-08-17 Last updated: 2025-03-27Bibliographically approved
In thesis
1. Direct patterning processes for high-performance microsupercapacitors
Open this publication in new window or tab >>Direct patterning processes for high-performance microsupercapacitors
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The surge in miniaturized electronic components driven by the Internet of Things (IoT) has prompted an interest in non-traditional energy storage solutions. For these applications, reduction of size while preserving power and energy densities are of great importance. Within this context, planar microsupercapacitors (MSCs) have emerged as strong candidates for energy storage. Their unique two-dimensional structure, rapid charge-discharge capabilities, high power density, and enduring stability make them highly appealing as power units for on-chip integration.

However, the intricate nature of MSC fabrication remains a substantial challenge. Conventionally used indirect patterning processes, such as photolithography, are limiting the implementation of novel functional nanomaterials with high charge storing capacities. As a result, other kinds of direct patterning processes can be used to fabricate state-of-the-art MSCs. Recent studies mainly focused on improving the patterning geometry, minimizing electrode dimensions and narrowing the electrode gap to maintain high resolution of MSCs. However, these efforts were made at the expense of process scalability potential and degree of complexity of the fabrication processes. This thesis aims to develop fabrication process flows with emphasis on simplicity and versatility without sacrificing the possibility for large-scale fabrication of MSCs with high-performance.

The first part of this thesis describes the implementation of highly scalable inkjet printing process for fabrication of high-performance MSCs. Typically, inkjet printing can be used to deposit thin films of materials. However, to fabricate MSCs with high-performance, the thickness is a crucial parameter that requires scaling up. The contribution of the first work is dealing with overcoming printing limitations by describing a step-like fabrication process that was developed to overcome the limitations of inkjet printing to increase the thickness of the electrode material, and, therefore its electrochemical performance. The outcome graphene-based solid-state MSCs free from metallic current collector exhibit high areal capacitance of 0.1mF cm−2 and hold promise for on-chip fabrication. In the second work, a facile integration of inkjet printing with an electrodeposition technique is used to fabricate hybrid flexible MSCs based on graphene, Fe2O3, and MnO2 nanomaterials with∼90% capacitance retention after 10 000 charge-discharge cycles.

In the second part of this thesis, direct laser writing process is implemented as a viable alternative to fabrication of planar MSCs, based on a variety of highly electrochemically active nanomaterials that are not compatible with inkjet printing. In the third, fourth, and fifth works binder-free ink formulation approaches were developed to fabricate composite nanomaterial films based on graphene, graphene oxide, carbon nanotubes (CNTs), and polyaniline (PANI). Efficient patterning of these films, thanks to the wide range of controls over the laser beam, was realized highlighting the simplicity of the developed fabrication processes for MSCs with high areal capacitance of 172 mF cm−2. Furthermore, it enabled the fabrication of MSCs that can operate in a wide temperature range from 25 to 250 °C.

In summary, this thesis reshapes the MSC fabrication process by considering performance, scalability, and process adaptability towards novel functional nanomaterials. These proposed methods are further strengthened by innovative ink formulation strategies using these materials, highlighting their potential applicability in emergent energy storage devices.

Abstract [sv]

Ökningen av miniatyriserade elektroniska komponenter som drivs av Internet of Things (IoT) har väckt ett intresse för icke-traditionella energilagringslösningar. För dessa applikationer är det av stor betydelse att reducerad storlek inte sker på bekostnad av effekt och energitäthet. Inom detta sammanhang har plana mikrosuperkondensatorer (MSC) dykt upp som starka kandidater för energilagring. Deras unika tvådimensionella struktur, snabba laddnings- och urladdningsmöjligheter, höga effekttäthet och varaktiga stabilitet gör dem mycket tilltalande som kraftenheter för integration på chip.

MSC-tillverkningens komplexa natur är dock fortfarande en stor utmaning. Konventionellt använda indirekta mönstringsprocesser, såsom fotolitografi, begränsar implementeringen av nya funktionella nanomaterial med hög kapacitet förladdningslagring. Ett resultat av det är att andra direkta mönstringsprocesser kan användas för att tillverka toppmoderna MSC:er. Nyligen genomförda studier har huvudsakligen fokuserat på att förbättra mönstringsgeometrin: minimera elektroddimensioner och minska elektrodgapet för att bibehålla hög upplösning av MSC:er. Dessa förbättringar gjordes dock på bekostnad av processens skalbarhetspotential och ökade graden av komplexitet i tillverkningsprocesserna. Denna avhandling syftar till att utveckla processflöden för tillverkning med betoning på enkelhet och mångsidighet, utan att offra möjligheten för storskalig tillverkning av MSC:er med hög prestanda.

Den första delen av denna avhandling beskriver implementeringen av en mycket skalbar process för bläckstråleutskrift för tillverkning av högpresterande MSC:er. Vanligtvis används bläckstråleutskrift för att avsätta tunna filmer av material. För att tillverka högpresterande MSC:er är dock tjockleken en avgörande parameter som kräver uppskalning. Det första arbetet i denna avhandling beskriver en tillverkningsprocess som utvecklades för att överkomma begränsningarna med bläckstråleutskrift för att öka tjockleken på elektrodmaterialet och därmed dess elektrokemiska prestanda. Resultatet av grafenbaserade fasta MSC:er fria från metallisk strömavtagare uppvisar hög ytkapacitans på 0,1 mF cm−2 och har potential för tillverkning på chip. I det andra arbetet används en enkel integration av bläckstråleutskriftmed elektroplätering för att tillverka flexibla hybrid-MSC:er baserade på grafen, Fe2O3 och MnO2 nanomaterial med ∼90% bibehållen kapacitans efter 10 000 laddningscykler.

I den andra delen av avhandlingen beskrivs en direkt laserskrivprocess baserad på en mängd elektrokemiskt högaktiva nanomaterial som inte är kompatibla med bläckstråleutskrift, som ett gångbart alternativ till tillverkning av plana MSC. I det tredje, fjärde och femte arbetet utvecklades metoder med bindemedelsfria bläckformulae för att tillverka sammansatta nanomaterialfilmer baserade på grafen, grafenoxid, kolnanotuber och polianilin. Effektiv mönstring av dessa filmer kunde åstadkommas med hjälp av laser, vilket lyfter fram enkelheten i de utvecklade tillverkningsprocesserna för MSC:er med hög ytkapacitans på 172 mF cm−2. Dessutom möjliggjorde tillverkningen av MSC:er som kan arbeta i ett brett temperaturområde på 25 till 250 °C.

Sammanfattningsvis omformar denna avhandling MSC-tillverkningsprocessen genom att beakta MSC-prestanda, skalbarhet och anpassningsbarhet i processen mot nya funktionella nanomaterial. Dessa metoder förstärks ytterligare av innovativa bläckformuleringsstrategier som använder dessa material, vilket framhäver deras potentiella tillämpbarhet i nya energilagringsenheter.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. p. xviii, 73
Series
TRITA-EECS-AVL ; 2023:59
Keywords
microsupercapacitors, energy storage, solid electrolyte, direct laser patterning, inkjet printing, functional nanomaterials., mikrosuperkondensatorer, energilagring, fast elektrolyt, direkt lasermärkning, bläckstråleutskrift, funktionella nanomaterial
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-335732 (URN)978-91-8040-688-8 (ISBN)
Public defence
2023-09-29, Sal C, Kistagången 16, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2019-04731ÅForsk (Ångpanneföreningen's Foundation for Research and Development), 17-352Swedish Research Council Formas, 2016-00496
Note

QC 20230908

Available from: 2023-09-08 Created: 2023-09-07 Last updated: 2023-09-18Bibliographically approved

Open Access in DiVA

fulltext(4842 kB)80 downloads
File information
File name FULLTEXT01.pdfFile size 4842 kBChecksum SHA-512
02ca72214c7ff39b9cee098d985f390deace50ef78d3e7d59bf91bf2e3247f9ad2a89f37ad9128ff4bed7cb2b2ed8b930dc3e083814a460622567902ab217263
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Mishukova, ViktoriiaSu, YingchunChen, ShiqianLi, Jiantong

Search in DiVA

By author/editor
Mishukova, ViktoriiaSu, YingchunChen, ShiqianBoulanger, NicolasLi, Jiantong
By organisation
Integrated devices and circuitsElectronic and embedded systemsElectronics and Embedded systems
In the same journal
Batteries & Supercaps
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 83 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 382 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf