kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reconstructing the transport cycle in the sugar porter superfamily using coevolution-powered machine learning
KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0002-3219-1062
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.ORCID iD: 0000-0002-6855-9295
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.ORCID iD: 0000-0001-8595-9250
KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.ORCID iD: 0000-0001-6177-0701
Show others and affiliations
2023 (English)In: eLIFE, E-ISSN 2050-084X, Vol. 12Article in journal (Refereed) Published
Abstract [en]

Sugar porters (SPs) represent the largest group of secondary-active transporters. Some members, such as the glucose transporters (GLUTs), are well known for their role in maintaining blood glucose homeostasis in mammals, with their expression upregulated in many types of cancers. Because only a few sugar porter structures have been determined, mechanistic models have been constructed by piecing together structural states of distantly related proteins. Current GLUT transport models are predominantly descriptive and oversimplified. Here, we have combined coevolution analysis and comparative modeling, to predict structures of the entire sugar porter superfamily in each state of the transport cycle. We have analyzed the state-specific contacts inferred from coevolving residue pairs and shown how this information can be used to rapidly generate free-energy landscapes consistent with experimental estimates, as illustrated here for the mammalian fructose transporter GLUT5. By comparing many different sugar porter models and scrutinizing their sequence, we have been able to define the molecular determinants of the transport cycle, which are conserved throughout the sugar porter superfamily. We have also been able to highlight differences leading to the emergence of proton-coupling, validating, and extending the previously proposed latch mechanism. Our computational approach is transferable to any transporter, and to other protein families in general.

Place, publisher, year, edition, pages
eLife Sciences Publications, Ltd , 2023. Vol. 12
Keywords [en]
membrane protein, molecular biophysics, molecular dynamics simulations, molecular modeling, none, structural biology, structure prediction, transporter
National Category
Biochemistry Molecular Biology
Identifiers
URN: urn:nbn:se:kth:diva-334624DOI: 10.7554/eLife.84805ISI: 001071912700001PubMedID: 37405846Scopus ID: 2-s2.0-85164005539OAI: oai:DiVA.org:kth-334624DiVA, id: diva2:1790722
Note

QC 20231123

Available from: 2023-08-23 Created: 2023-08-23 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Combining Evolution and Physics through Machine Learning to Decipher Molecular Mechanisms
Open this publication in new window or tab >>Combining Evolution and Physics through Machine Learning to Decipher Molecular Mechanisms
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

From E.coli to elephants, the cells of all living organisms are surrounded by a near impenetrable wall of lipids. The windows through the walls are membrane proteins - receptors, transporters and channels that confer communication, information and metabolites through the membrane. Without opening holes in the membrane, it is necessary for these proteins to alter their shapes by cycling between conformational states to transport signals or molecules. Owing to their important role as information bottle-necks, changes in their function can lead to cancer, infectious diseases, or metabolic disorders. Hence, they are important targets for drug discovery, therapeutic research and understanding the human body.

Due to the delicate thermodynamic balance of conformational states of these proteins that are modulated by external stimuli, it is difficult to trap them in experimental setups in which their native states are captured. To add to the problematic nature of their molecular mechanisms, they are too fast to kinetically trap in a certain state long enough to observe without breaking the molecular mechanism. Fast moving mechanisms makes them a good target for molecular dynamics (MD) simulations, where the movement of all atoms in the proteins is simulated over time. Although a powerful tool, modern MD simulations are not able to access long enough timescales to accurately measure macroscopic functionally relevant information, leaving a gap between simulations and reality in which many conclusions made with atomic resolution fail to translate into macroscopic phenomena, such as receptor activity, transport efficiency, mutational stability or allosteric signalling.

This work presents novel methodology that efficiently discovers and explores functionally relevant conformational states using MD simulations. By combining evolutionary information with physics using machine learning, the methodology accelerates the sampling while retaining the details of the molecular mechanism and the thermodynamic information. Additionally, the work shows how the methodology is capable of bridging the gap in resolution between experiments and simulations through the in-silico measurement of macroscopic phenomena on a microscopic scale. Moreover, it uniquely presents a framework applied to 4 studies on different target proteins of different families in which conformational change occurs, and is able to independently relate them to different types of measurements.

Abstract [sv]

Från E.coli till elefanter är levande organismers celler omslutna av en näst-intill oigenomtränglig vägg av lipider. Fönstrena genom dessa väggar är membranproteiner - receptorer, transportörer och kanaler. Därigenom färdas signaler, information och metaboliter. Av proteinerna krävs att de måste kunna utföra dessa funktioner utan att lämna stora hål i cellerna. Evolutionen har således producerat protein som kan ändra form, eller strukturellt tillstånd som svar på externa signaler. Genom deras oklanderligt viktiga position som informationsbärande flaskhalsar är det också katastrofalt när det blir fel i deras mekanismer, vilket kan ge upphov till allt ifrån cancer till sjukdomar rörande ämnesomsättning. Därför är de också av oerhört intresse för läkemedelsutveckling, utveckling av terapeutiska strategier, eller helt enkelt för att förstå dessa hörnstenar i vår komplexa anatomi.

På grund av deras väl avvägda termodynamiska balans mellan strukturella tillstånd som dessutom är reglerade av externa signaler är det svårt att experimentellt fånga dessa flyktiga tillstånd och fortfarande bevara deras naturliga struktur. Som om det inte vore nog är deras molekylära mekanismer ofta alldeles för kortvariga för att kunna prepareras och sedan observeras. Som konsekvens har istället molekylärdynamiksimulering (MD), ett verktyg som simulerar hur varje enskild atom rör sig över tid, använts för att studera dynamiken i övergångarna mellan olika tillstånd. Trots enorma framsteg i högprestandaberäkningsvetenskap är det fortfarande svårt att nå de tidsskalorna i vilka de molekylära mekanismerna blir synliga, vilket lämnar ett stort gap mellan simuleringar och verkligheten. I det gapet faller ofta viktiga aspekter såsom receptoraktivitet, transporteffektivitet, mutationsstabilitet eller allosterisk signallering, som alla är viktiga att förstå för att kunna modulera dessa mekanismer.

Detta arbete presenterar nydanande teknik som på ett effektivt sätt upptäcker och utforskar det strukturella landskapet i vilket olika proteintillstånd ligger med hjälp av MD simuleringar. Genom att kombinera evolutionär information med fysik med hjälp av maskininlärning byggs en metod som accelerar tidsskalan för utforskandet men samtidigt bevarar de viktiga molekylära detaljerna. Dessutom visar arbetet hur metoden kan användas för att överbrygga det sistnämnda gapet mellan simuleringar och verkligheten genom att i datorn mäta storheter som förekommer på makroskopisk skala i laboratorieexperiment. Slutligen visar arbetet också 4 exempel på hur metoden gör detta på system som är av intresse för läkemedelsforskning, och tar reda på nya insikter kring dessa molekylära maskiner.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2024:23
Keywords
Molecular Dynamics Simulation, Evolution, Enhanced Sampling, Machine Learning, Molecular Mechanism, Molekyldynamiksimuleringar, Evolution, Accelererad utforskning, Maskininlärning, Molekylära mekanismer
National Category
Biophysics
Research subject
Biological Physics
Identifiers
urn:nbn:se:kth:diva-345862 (URN)978-91-8040-921-6 (ISBN)
Public defence
2024-05-15, FA32, Roslagtullsbacken 21, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2024-04-23

Available from: 2024-04-23 Created: 2024-04-23 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Mitrovic, DarkoMcComas, Sarah E.Alleva, ClaudiaBonaccorsi, MartaDrew, DavidDelemotte, Lucie

Search in DiVA

By author/editor
Mitrovic, DarkoMcComas, Sarah E.Alleva, ClaudiaBonaccorsi, MartaDrew, DavidDelemotte, Lucie
By organisation
BiophysicsScience for Life Laboratory, SciLifeLab
In the same journal
eLIFE
BiochemistryMolecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 54 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf