kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Search for leptonic charge asymmetry in tt¯ W production in final states with three leptons at √s = 13 TeV
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0001-9415-7903
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0009-0004-1439-5151
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0003-3867-0336
Show others and affiliations
Number of Authors: 29352023 (English)In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 7, article id 33Article in journal (Refereed) Published
Abstract [en]

A search for the leptonic charge asymmetry (Acℓ) of top-quark-antiquark pair production in association with a W boson (tt¯ W) is presented. The search is performed using final states with exactly three charged light leptons (electrons or muons) and is based on s = 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN during the years 2015–2018, corresponding to an integrated luminosity of 139 fb −1. A profile-likelihood fit to the event yields in multiple regions corresponding to positive and negative differences between the pseudorapidities of the charged leptons from top-quark and top-antiquark decays is used to extract the charge asymmetry. At reconstruction level, the asymmetry is found to be −0.12 ± 0.14 (stat.) ± 0.05 (syst.). An unfolding procedure is applied to convert the result at reconstruction level into a charge-asymmetry value in a fiducial volume at particle level with the result of −0.11 ± 0.17 (stat.) ± 0.05 (syst.). The Standard Model expectations for these two observables are calculated using Monte Carlo simulations with next-to-leading-order plus parton shower precision in quantum chromodynamics and including next-to-leading-order electroweak corrections. They are −0.084−0.003+0.005 (scale) ± 0.006 (MC stat.) and −0.063−0.004+0.007 (scale) ± 0.004 (MC stat.) respectively, and in agreement with the measurements.

Place, publisher, year, edition, pages
Springer Nature , 2023. Vol. 2023, no 7, article id 33
Keywords [en]
Hadron-Hadron Scattering, Top Physics
National Category
Subatomic Physics
Identifiers
URN: urn:nbn:se:kth:diva-334615DOI: 10.1007/JHEP07(2023)033ISI: 001062554100001Scopus ID: 2-s2.0-85164102382OAI: oai:DiVA.org:kth-334615DiVA, id: diva2:1790736
Note

QC 20230823

Available from: 2023-08-23 Created: 2023-08-23 Last updated: 2023-10-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Leopold, AlexanderLundberg, OlofLund-Jensen, BengtOhm, ChristianShaheen, RabiaStrandberg, Jonas

Search in DiVA

By author/editor
Leopold, AlexanderLundberg, OlofLund-Jensen, BengtOhm, ChristianShaheen, RabiaStrandberg, Jonas
By organisation
Particle and Astroparticle Physics
In the same journal
Journal of High Energy Physics (JHEP)
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf