kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Machine Learning for State Estimation in Fighter Aircraft
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory.
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Maskininlärning för tillståndsestimering i stridsflygplan (Swedish)
Abstract [en]

This thesis presents an estimator to assist or replace a fighter aircraft’s air datasystem (ADS). The estimator is based on machine learning and LSTM neuralnetworks and uses the statistical correlation between states to estimate the angleof attack, angle of sideslip and Mach number using only the internal sensorsof the aircraft. The model is trained and extensively tested on a fighter jetsimulation model and shows promising results. The methodology and accuracyof the estimator are discussed, together with how a real-world implementationwould work. The estimators presented should act as a proof of concept of thepower of neural networks in state estimation, whilst the report discusses theirstrengths and weaknesses. The estimators can estimate the three targets wellin a vast envelope of altitudes, speeds, winds and manoeuvres. However, thetechnology is quite far from real-world implementation as it lacks transparencybut shows promising potential for future development.

Abstract [sv]

Det här examensarbetet presenterar en estimator för att hjälpa eller ersätta ettstridsflygplans luftdatasystem (ADS). Estimatorn är baserad på maskininlärningoch LSTM neurala nätverk och använder statistisk korrelation mellan tillstånd föratt uppskatta anfallsvinkeln, sidglidningsvinkel och Mach-tal endast med hjälpav flygplanets interna sensorer. Modellen är tränad och utförligt testad på ensimuleringsmodell för stridsflygplan och visar lovande resultat. Estimatornsmetodik och noggrannhet diskuteras, tillsammans med hur en implementeringi verkligheten skulle fungera. De presenterade estimatorerna bör fungera somett “proof of concept” för kraften hos neurala nätverk för tillståndsuppskattning,medan rapporten diskuterar deras styrkor och svagheter. Estimatorerna kanuppskatta de tre tillstånden väl i ett stort spektra av altituder, hastigheter, vindaroch manövrar. Tekniken är dock ganska långt ifrån en verklig implementeringeftersom den saknar transparens, men visar lovande potential för framtidautveckling.

Place, publisher, year, edition, pages
2023. , p. 78
Series
TRITA-SCI-GRU ; 2023:470
Keywords [en]
State estimation, machine learning, fighter aircraft, neural networks, long short- term memory, LSTM, sensor fusion, air data system, ADS.
Keywords [sv]
Tillståndsestimering, maskininlärning, stridsflygplan, neurala nätverk, sensorfusion, luftdatasystem.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-334838OAI: oai:DiVA.org:kth-334838DiVA, id: diva2:1791909
External cooperation
Saab AB
Subject / course
Systems Engineering
Educational program
Master of Science - Aerospace Engineering
Supervisors
Examiners
Available from: 2023-09-06 Created: 2023-08-28 Last updated: 2024-05-23Bibliographically approved

Open Access in DiVA

fulltext(2135 kB)465 downloads
File information
File name FULLTEXT01.pdfFile size 2135 kBChecksum SHA-512
9b20d63865bf9e4f8219bcae1ec54ad32bf1df3e456fe50909e5174ef55788789abb88b67a84dcffbdfbef9ff21ed8e7e1d9fda38cc95b94b2db409d7a264be4
Type fulltextMimetype application/pdf

By organisation
Optimization and Systems Theory
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 466 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 569 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf