kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Zero Coupon Yield Curve Construction Methods in the European Markets
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Metoder för att konstruera nollkupongkurvor på de europeiska marknaderna (Swedish)
Abstract [en]

In this study, four frequently used yield curve construction methods are evaulated on a set of metrics with the aim of determining which method is the most suitable for estimating yield curves from European zero rates. The included curve construction methods are Nelson-Siegel, Nelson-Siegel-Svensson, cubic spline interpolation and forward monotone convex spline interpolation. We let the methods construct yield curves on multiple sets of zero yields with different origins. It is found that while the interpolation methods show greater ability to adapt to variable market conditions as well as hedge arbitrary fixed income claims, they are outperformed by the parametric methods regarding the smoothness of the resulting yield curve as well as their sensitivity to noise and perturbations in the input rates. This apart from the Nelson-Siegel method's problem of capturing the behavior of underlying rates with a high curvature. The Nelson-Siegel-Svensson method did also exhibit instability issues when exposed to perturbations in the input rates. The Nelson-Siegel method and the forward monotone convex spline interpolation method emerge as most favorable in their respective categories. The ultimate selection between the two methods must however take the application at hand into consideration due to their fundamentally different characteristics.

Abstract [sv]

I denna studie utvärderas fyra välanvända metode för att konstruera yieldkurvor på ett antal punkter. Detta med syfte att utröna vilken metod som är bäst lämpad för att estimera yieldkurvor på Europeiska nollkupongräntor. Metoderna som utvärderas är Nelson-Siegel, Nelson-Siegel-Svensson, cubic spline-interpolering samt forward monotone convex spline-interpolering. Vi låter metoderna estimera yieldkurvor på flera sammansättningar nollkupongräntor med olika ursprung. Vi ser att interpoleringsmetoderna uppvisar en större flexibilitet vad gäller att anpassa sig till förändrade marknadsförutsättningar samt att replikera godtyckliga ränteportföljer. När det gäller jämnhet av yieldkurvan och känsligheten för brus och störningar i de marknadsräntor som kurvan konstrueras utifrån så presterar de parametiska metoderna däremot avsevärt bättre. Detta bortsett från att Nelson-Siegel-metoden hade problem att fånga beteendet hos nollkupongräntor med hög kurvatur. Vidare hade Nelson-Siegel-Svensson-metoden problem med instabilitet när de underliggande marknadsrentorna utsattes för störningar. Nelson-Siegen-metoden samt foward monotone convex spline-interpolering visade sig vara bäst lämpade för att konstruera yieldkurvor på de Europeiska marknaderna av de utvärderade metoderna. Vilken metod av de två som slutligen bör användas behöver bedömas från fall till fall grundat i vilken tillämpning som avses.

Place, publisher, year, edition, pages
2022. , p. 70
Series
TRITA-SCI-GRU ; 2022:361
Keywords [en]
Zero coupon, Yield curve construction, Forward monotone convex spline, Cubic spline, Nelson Siegel, Nelson Siegel Svensson, Hedge, Interpolation, Parameterization, Evaluation, Principal component
Keywords [sv]
Nollkupong, Yieldkurva, Forward monotone convex spline, Kubisk spline, Nelson Siegel, Nelson Siegel Svensson, Interpolering, Parameterisering, Utvärdering, Principalkomponent, Hedge
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-334900OAI: oai:DiVA.org:kth-334900DiVA, id: diva2:1792401
External cooperation
E. Öhman J:or Fonder AB
Subject / course
Financial Mathematics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2023-09-06 Created: 2023-08-29 Last updated: 2023-09-26Bibliographically approved

Open Access in DiVA

fulltext(2618 kB)2559 downloads
File information
File name FULLTEXT01.pdfFile size 2618 kBChecksum SHA-512
df6c62a5b8ee8c8e119ca3ee811f10a6f21f193cb7fa0149399fd69d4adedac5a93c4f171be1c432b5998a0ff668df7995a02c98a0bd8d734c3abc3f3ddfd081
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 2563 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 434 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf