kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analys av luftkvaliteten på Hornsgatan med hjälp av maskininlärning utifrån trafikflödesvariabler
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Air Quality Analysis on Hornsgatan using Machine Learning with regards to Traffic Flow (English)
Abstract [sv]

Denna studie har syftet att undersöka sambandet mellan luftföroreningar och olika fordonsvariabler, såsom årsmodell, bränsletyp och fordonstyp, på Hornsgatan i Stockholm. Studien avser att besvara vilka faktorer som har störst inverkan på luftkvaliteten. Utförandet baseras på maskininlärningsalgoritmerna Random Forest och Support Vector Regression, vilka jämförs utifrån R² och RMSE. Modellerna skapade med Random Forest överträffar Support Vector Regression för de olika luftföroreningarna. Den modell som presterade bäst var modellen för kolmonoxid vilken hade ett R²-värde på 99.7%. Den modell som gav prediktioner med lägst R²-värde, 68.4%, var modellen för kvävedioxid. Överlag var resultaten goda i relation till tidigare studier. Utifrån modellerna diskuteras variablers inverkan och olika åtgärder som kan införas i Stockholm Stad och på Hornsgatan för att förbättra luftkvaliteten.

Abstract [en]

This study aims to investigate the relationship between multiple air pollution and different vehicle variables, such as vehicle year, fuel type and vehicle type, on Hornsgatan in Stockholm. The study intends to answer which factors have the greatest impact on air quality. The implementation is based on the two machine learning algorithms Random Forest and Support Vector Regression, which are compared based on R² and RMSE. The models created with Random Forest outperform Support Vector Regression for the various air pollutants. The best performing model was the carbon monoxide model which had an R²-value of 99.7%. The model that gave predictions with the lowest R²-value, 68.4%, was the model for nitrogen dioxide. Overall, the results were good in relation to previous studies. With regards to these models, the impact of variables and different measures that can be introduced in the City of Stockholm and on Hornsgatan to improve air quality are discussed.

Place, publisher, year, edition, pages
2023. , p. 15
Series
TRITA-EECS-EX ; 2023:448
Keywords [en]
Hornsgatan, Air Quality, Random Forest, Stockholm Stad, Support Vector Regression, Machine Learning
Keywords [sv]
Hornsgatan, Luftkvalitet, Random Forest, Stockholm Stad, Support Vector Regression, Maskininlärning
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-335002OAI: oai:DiVA.org:kth-335002DiVA, id: diva2:1792975
Supervisors
Examiners
Available from: 2023-09-11 Created: 2023-08-30 Last updated: 2023-10-09Bibliographically approved

Open Access in DiVA

fulltext(1663 kB)222 downloads
File information
File name FULLTEXT01.pdfFile size 1663 kBChecksum SHA-512
ba3b0741c2b4b8859a0bb32dd300ad1977c612495438e414cbae8ec61b7d10a2c5d5ed2618c5034e8ae848d91f1b261ea1e07419ed5690b77eb33a972ddc5373
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 223 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 603 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf