kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Occlusion-Aware Autonomous Highway Driving: Tracking safe velocity bounds on potential hidden traffic for improved trajectory planning
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Skymd-sikt-medveten autonom motorvägskörning : Bestämning av säkra hastighetsgränser för möjlig skymd trafik för förbättrad banplanering (Swedish)
Abstract [en]

In order to reach higher levels of autonomy in autonomous driving, it is important to consider potential occluded traffic participants. Current research has considered occlusion-aware autonomous driving in urban situations. However, no implementations have shown good performance in high velocity situations such as highway driving yet, since the current methods are too conservative in these situations and result in frequent excessive braking. In this work a method is proposed that tracks boundaries on the velocity states of potential hidden traffic using reachability analysis. It is proven that the method can guarantee collision-free trajectories for any, potentially hidden, traffic. The method is evaluated on cut-in scenarios retrieved from a dataset of recorded traffic. The results show that tracking the velocity bounds for potentially hidden traffic results in more efficient trajectories up to 18 km/h faster compared to existing occlusion-aware methods. While the method shows clear improvements, it does not always manage to establish a velocity bound and at times excessive braking still occurs. Further work is thus necessary to ensure consistently well-performing occlusion-aware highway driving.

Abstract [sv]

För att nå högre nivåer av autonomi vid autonom körning är det viktigt att ta hänsyn till möjliga skymda trafikanter. Aktuell forskning har övervägt skymd-sikt-medveten autonom körning i urbana situationer. Emellertid har inga implementeringar visat bra prestanda i höghastighetssituationer såsom motorvägskörning ännu, eftersom de nuvarande metoderna är för konservativa i dessa situationer och resulterar i frekventa överdrivna inbromsningar. I detta arbete föreslås en metod som bestämmer gränser för hastighetstillstånden för möjlig skymd trafik med hjälp av nåbarhetsanalys. Det är bevisat att metoden kan garantera kollisionsfria banor för all möjlig skymd trafik. Metoden utvärderas på scenarier hämtade från ett dataset av registrerad trafik. Resultaten visar att bestämning av hastighetsgränserna för möjlig skymd trafik resulterar i effektivare banor upp till 18 km/h snabbare jämfört med befintliga skymd-sikt-medvetna-metoder. Även om metoden visar tydliga förbättringar, lyckas den inte alltid fastställa en hastighetsgräns och ibland förekommer fortfarande överdriven inbromsning. Ytterligare arbete är därför nödvändigt för att säkerställa konsekvent välpresterande motorvägskörning under skymd sikt.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology , 2023. , p. 68
Series
TRITA-EECS-EX ; 2023:566
Keywords [en]
Autonomous Driving, Occlusion-Awareness, Reachability Analysis, Highway driving, Formal Safety
Keywords [sv]
Autonom Körning, Skymd-sikt-medveten, Nåbarhetsanalys, Motorvägskörning, Formell Säkerhet
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-335013OAI: oai:DiVA.org:kth-335013DiVA, id: diva2:1792999
External cooperation
Scania AB
Presentation
2023-06-15, Fantum, Lindstedtsvägen 24, Stockholm, 15:15 (English)
Supervisors
Examiners
Available from: 2023-09-14 Created: 2023-08-30 Last updated: 2023-09-14Bibliographically approved

Open Access in DiVA

fulltext(1960 kB)324 downloads
File information
File name FULLTEXT01.pdfFile size 1960 kBChecksum SHA-512
e0976c4edf1539cdc1bf7114e5a49a4b2670c31c056451e75e7a56777e69fde4667093676ebf85710680c89265b8f23b99f01293c88d4c6449aea2c6c227c789
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 324 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 312 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf