kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
ACWGAN-GP for milling tool breakage monitoring with imbalanced data
Harbin Univ Sci & Technol, Key Lab Adv Mfg & Intelligent Technol, Minist Educ, Harbin 150080, Peoples R China..
Harbin Univ Sci & Technol, Key Lab Adv Mfg & Intelligent Technol, Minist Educ, Harbin 150080, Peoples R China..
Harbin Univ Sci & Technol, Key Lab Adv Mfg & Intelligent Technol, Minist Educ, Harbin 150080, Peoples R China..
Harbin Univ Sci & Technol, Key Lab Adv Mfg & Intelligent Technol, Minist Educ, Harbin 150080, Peoples R China..
Show others and affiliations
2024 (English)In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 85, article id 102624Article in journal (Refereed) Published
Abstract [en]

Tool breakage monitoring (TBM) during milling operations is crucial for ensuring workpiece quality and mini-mizing economic losses. Under the premise of sufficient training data with a balanced distribution, TBM methods based on statistical analysis and artificial intelligence enable accurate recognition of tool breakage conditions. However, considering the actual manufacturing safety, cutting tools usually work in normal wear conditions, and acquiring tool breakage signals is extremely difficult. The data imbalance problem seriously affects the recog-nition accuracy and robustness of the TBM model. This paper proposes a TBM method based on the auxiliary classier Wasserstein generative adversarial network with gradient penalty (ACWGAN-GP) from the perspective of data generation. By introducing Wasserstein distance and gradient penalty terms into the loss function of ACGAN, ACWGAN-GP can generate multi-class fault samples while improving the network's stability during adversarial training. A sample filter based on multiple statistical indicators is designed to ensure the quality and diversity of the generated data. Qualified samples after quality assessment are added to the original imbalanced dataset to improve the tool breakage classifier's performance. Artificially controlled face milling experiments for TBM are carried out on a five-axis CNC machine to verify the effectiveness of the proposed method. Experimental results reveal that the proposed method outperforms other popular imbalance fault diagnosis methods in terms of data generation quality and TBM accuracy, and can meet the real-time requirements of TBMs.

Place, publisher, year, edition, pages
Elsevier BV , 2024. Vol. 85, article id 102624
Keywords [en]
Tool breakage monitoring, Milling tool, Imbalanced data, Generative adversarial network, ACWGAN-GP, Deep learning
National Category
Other Civil Engineering
Identifiers
URN: urn:nbn:se:kth:diva-335183DOI: 10.1016/j.rcim.2023.102624ISI: 001051111800001Scopus ID: 2-s2.0-85166476791OAI: oai:DiVA.org:kth-335183DiVA, id: diva2:1793646
Note

QC 20230901

Available from: 2023-09-01 Created: 2023-09-01 Last updated: 2023-09-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Wang, Lihui

Search in DiVA

By author/editor
Wang, Lihui
By organisation
Production engineering
In the same journal
Robotics and Computer-Integrated Manufacturing
Other Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 154 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf