kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spectroelectrochemistry with Ultrathin lon-Selective Membranes
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0001-7324-0054
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Rapid and decentralized chemical sensing strategies are highly demanded in contemporary society to monitor ongoing processes relevant to the environment, food analysis, healthcare, sports performance, etc. In this context, ion-selective electrodes (ISEs) based on polymeric membranes have emerged as a promising analytical technique owing to their features of low cost, portability, versatility, and energy efficiency. Despite their undeniable success in potentiometric sensing, the interrogation of such electrodes under dynamic electrochemical techniques opens new horizons. An interesting example is voltammetric ISEs comprising the tandem ultrathin membranes and poly(3-octylthiophene) (POT) as the redox mediator. In these ISEs, ion transfer (IT) processes at the sample-membrane interface can be modulated by the electron transfer (ET) at the underlaying POT film, presenting an interconnected IT-ET system that is promising for various analytical purposes.

Conveniently, the UV-Vis absorption spectra of a POT film present clear differences between its oxidized and reduced forms. Accordingly, spectroelectrochemical properties of POT can be dynamically monitored to track the ET in the film, and ultimately the associated IT processes, in voltammetric ISEs. Effectively, the obtained information is valuable from both a theoretical and analytical application point of views. In this regard, this doctoral project focuses on the spectroelectrochemical study of voltammetric ISEs based on ultrathin ion-selective membranes interconnected with POT films.

The first chapter provides a general introduction to the concepts involved in this thesis, emphasizing the all-solid-state ISEs, the development of ultrathin membranes working under voltammetric mode, and UV-Vis spectroelectrochemistry. The second chapter describes the experimental details of the thesis. The third chapter, which is composed of four sections, presents the main results of this thesis and the corresponding discussions.

More in detail, the first section reports the utilization of spectroelectrochemistry to characterize the correlation between IT and ET processes in voltammetric ISEs. The dynamic absorbance readout unequivocally corresponds to the ET process resulting along the gradual oxidation of POT. The electrochemical signal, whichinvolves dynamically integrated charge, describes in turn the IT process at the membrane-solution interface. The two processes are proved to be totally interconnected, both exhibiting sigmoidal-shaped features that can be described with the mathematical Boltzmann-Sigmoidal model.

The second section presents the visualization of ionophore-assisted and nonassisted IT processes along the same voltammetric scan of a voltammetric ISE, using a series of ultrathin membranes rationalized to produce assisted and nonassisted ITs at different degrees. Essentially, the modification of the ionophore/ion exchanger molar ratio in the membrane tunes the nature of the IT peaks (for the analyte binding with ionophore or not). This derives into the easy calculation of important thermodynamic parameters (e.g., selectivity coefficients and binding constants) based on a semi-empirical approach.

The third section investigates the analytical application of the interconnected IT-ET processes based on spectroelectrochemistry. Advantageously, by changing the initial accumulation protocol of the analyte into the membrane, three distinct working ranges at millimolar, micromolar, and nanomolar concentration levels can be realized by the same ISE using absorbance-based readout. Notably, this is a very unique performance for an analytical technique.

The fourth section explores the possibility of calibration-free sensing based on theinterconnected IT-ET mechanism. Effectively, introducing a thin-layer sample makes it feasible to achieve complete transport of a cation (e.g., potassium) from the sample to the membrane and vice versa through a cyclic voltammetryinterrogation. Importantly, the charge under the IT peak can be directly utilized for calculating the concentration in the sample, precisely knowing the volume in the developed microfluidic cell. This investigation has demonstrated the huge potential of the developed ISEs (integrated in a microfluidic format) towards the realization of calibration-free analytical determinations.

Abstract [sv]

Snabba och decentraliserade kemiska sensor-strategier är mycket efterfrågade i dagens samhälle för att övervaka pågående processer relevanta för miljö, livsmedelsanalys, hälsovård och idrottsprestationer, etc. I dessa sammanhang har jonselektiva elektroder (ISE) baserade på polymera membran visat sig vara en lovande analytisk teknik på grund av deras låga kostnad, bärbarhet, samt deras låga energikonsumtion. Trots deras otvetydiga framgång för potentiometriska sensorer så öppnar dynamiska elektrokemiska metoder nya analytiska möjligheter. Ett intressant exempel är all-solid-state ISE:s baserade på ultratunna membran, och poly(3-oktyltiofen) (POT) som redox aktiv aktuator. I dessa ISE:er så kan jonöverföringar (IT) mellan membran och prov kontrolleras av elektronöverföringar (ET) mellan POT och elektrod-ytan, där den sammankopplade IT-ET processen är ett mycket attraktivt koncept för utvecklandet av många analytiska tekniker.

POT uppvisar olika UV-Vis absorptionsspektra i dess oxiderade och reducerade tillstånd. Därav kan POT:s spektroelektrokemiska egenskaper mätas dynamiskt för att följa både ET:s och IT:s för voltammetriska ISE:s. Den erhållna informationen är följaktligen värdefull för både teoretiska och analytiska tillämpningar. I detta avseende fokuserar denna avhandling på den spektroelektrokemiska studien av voltammetriska ISE:er baserade på ultratunna jonselektiva membran i kombination med POT-filmer.

Det första kapitlet ger en allmän introduktion till de koncept denna avhandling baseras på. Extra mycket fokus läggs på all-solid-state ISE, utvecklingen av ultratunna membran under voltammetrisk kontroll, samt UV-Vis spektroelektrokemi. Det andra kapitlet beskriver de experiment som utförts under avhandlingen, inklusive spektroelektrokemiska celler, tunnskiktsmikrofluidceller, de spektroelektrokemiska protokollen och provberedningar. Det tredje kapitlet, som består av fyra avsnitt, presenterar resultaten för denna avhandling samt tillhörande diskussioner.

Det första avsnittet redogör för användningen av spektroelektrokemi för att karakterisera sambandet mellan IT- och ET-processer i ISE. Den dynamiska avläsningen av absorbans kopplas till ET-processen kopplad till POT-oxidationen. Samtidigt beskriver den elektrokemiska signalens generade laddning IT-processen vid gränssnittet mellan membran och lösning. De två processerna visade sig vara sammanlänkade och kan matematiskt beskrivas med en Boltzmann-Sigmoid-modell.

Det andra avsnittet presenterar resultat för jonofor-assisterade IT och icke-assisterade IT, i varierande proportioner, för en serie ultratunna membran med hjälp av spektroelektrokemi. I huvudsak avgörs membranets egenskaper av molförhållandet mellan jonofor och jonbytare, vilket resulterar i ändringar av IT-topparnas karaktär (för analytens bindning både med och utan jonofor). Detta lägger grunden för den enkla beräkningen av termodynamiska parametrar (selektivitetskoefficienter och bindningskonstanter) baserat på en semi-empirisk modell.

Det tredje avsnittet undersöker den analytiska tillämpningen av de sammankopplade IT-CT-processerna baserade på spektroelektrokemi. Genom att justera protokollet för ackumulering av analyten kan millimolära, mikromolära och nanomolära koncentrationsnivåer mätas med samma ISE baserat på avläsning av absorbans. Denna trend är väldigt unik för analytiska tekniker.

Det fjärde avsnittet studerar möjligheten för kalibreringsfria sensorer baserade på den sammankopplade IT-ET-processen. Genom att införa ett tunnskiktsprov är det möjligt att uppnå fullständig och reversibel överföring av joner (t.ex. K+) från provet till membranet med cyklisk voltammetri. Laddningen under IT-toppen kan direkt användas för att beräkna koncentrationen av jonen i provet om dess volym är känd. Denna studie påvisade en enorm potential hos de utvecklade ISE:erna (i ett mikrofluidiskt format) för förverkligandet av kalibreringsfria sensorkoncept för att analytiskt bestämma halter av joner.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 81
Series
TRITA-CBH-FOU ; 2023:36
Keywords [en]
Ion-selective electrodes, electron-transfer and ion-transfer processes, spectroelectrochemistry, ultrathin membranes, thin-layer voltammetry, coulometry
Keywords [sv]
Jonselektiva elektroder, elektronöverförings- och jonöverföringsprocesser, spektroelektrokemi, ultratunna membran, tunnskiktsvoltammetri, coulometri
National Category
Analytical Chemistry
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-335228ISBN: 978-91-8040-667-3 (print)OAI: oai:DiVA.org:kth-335228DiVA, id: diva2:1793822
Public defence
2023-09-28, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2023-09-04

Available from: 2023-09-04 Created: 2023-09-04 Last updated: 2023-09-04Bibliographically approved
List of papers
1. Spectroelectrochemical Evidence of Interconnected Charge and Ion Transfer in Ultrathin Membranes Modulated by a Redox Conducting Polymer
Open this publication in new window or tab >>Spectroelectrochemical Evidence of Interconnected Charge and Ion Transfer in Ultrathin Membranes Modulated by a Redox Conducting Polymer
2020 (English)In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 92, no 20, p. 14085-14093Article in journal (Refereed) Published
Abstract [en]

Previous publications have demonstrated the tuning of ion-transfer (IT) processes across ion-selective membranes (ISMs) with thicknesses in the nanometer order by modulating the oxidation state of a film of a conducting polymer, such as poly(3-octylthiophene) [POT], that is in back-side contact. Attempts on the theoretical description of this charge transfer (CT)-IT system have considered the Nernst equation for the CT, while there is no empirical evidence confirming this behavior. We present herein the first experimental characterization of the CT in POT films involved in different CT-IT systems. We take advantage of the absorbance change in the POT film while being oxidized, to monitor the CT linked to nonassisted and assisted ITs at the sample-ISM interface, from one to three ionophores, therefore promoting a change in the nature and number of the ITs. The CT is visualized as an independent sigmoid in different potential ranges according to the assigned IT. Herein, we have proposed a simple calculation of the empirical CT utilizing the mathematical Sigmoidal-Boltzmann model. The identification of the physical meaning of the mathematical definition of CT opens up new possibilities for the design of sensors with superior analytical features (mainly in terms of selectivity) and the calculation of apparent binding constants in the ISM.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2020
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-287791 (URN)10.1021/acs.analchem.0c03124 (DOI)000584418100063 ()32972129 (PubMedID)2-s2.0-85095853831 (Scopus ID)
Note

QC 20210126

Available from: 2021-01-26 Created: 2021-01-26 Last updated: 2023-09-04Bibliographically approved
2. Semi-empirical treatment of ionophore-assisted ion-transfers in ultrathin membranes coupled to a redox conducting polymer
Open this publication in new window or tab >>Semi-empirical treatment of ionophore-assisted ion-transfers in ultrathin membranes coupled to a redox conducting polymer
2021 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 388, p. 138634-, article id 138634Article in journal (Refereed) Published
Abstract [en]

Applying spectroelectrochemistry to all-solid-state electrodes composed of poly(3-octylthiophene) (POT) and an ultrathin ion-selective membrane on top, it is possible to monitor the dynamic charge transfer (CT) in POT when this event is coupled to ion transfers (ITs) promoted by the absence/presence of a se-lective ionophore in the membrane. Herein, we report on a combination of empirical and theoretical ev-idence revealing that different molar ratios of the ionophore and the cation exchanger in the membrane result in the modulation of non-assisted and assisted ITs of different stoichiometries. This occurs upon the same anodic voltammetric scan. The use of the developed theory together with Sigmoidal & minus;Boltzmann fittings of the experimental dynamic absorbance observed in the POT film permits calculating voltammo-grams with different ITs. An easy semi-empirical treatment additionally provides the calculation of bind-ing constants related to the assisted transfers. Furthermore, the approach is suitable for both preferred and non-preferred ions by the ionophore, which additionally leads to the estimation of the selectivity profile of the POT-membrane system. The extra discovery about the number of electrons associated to the CT in the POT film is expected to propitiate further research towards maximizing peak resolution in the voltammetric experiments. In this context, the developed theory would help in future steps to-wards the prediction of voltammetric responses for multi-ionophore membranes backside contacted with new redox materials, prospecting hence new electrodes for multi-ion detection with optimized analytical features. 

Place, publisher, year, edition, pages
Elsevier BV, 2021
Keywords
Ultrathin ion-selective membranes, Ion transfer, Charge transfer, Spectroelectrochemistry, Ion-ionophore interactions
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:kth:diva-298740 (URN)10.1016/j.electacta.2021.138634 (DOI)000670310900003 ()2-s2.0-85108169635 (Scopus ID)
Note

QC 20210719

Available from: 2021-07-19 Created: 2021-07-19 Last updated: 2023-09-04Bibliographically approved
3. Spectroelectrochemistry with Ultrathin lon-Selective Membranes: Three Distinct Ranges for Analytical Sensing
Open this publication in new window or tab >>Spectroelectrochemistry with Ultrathin lon-Selective Membranes: Three Distinct Ranges for Analytical Sensing
2022 (English)In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 94, no 25, p. 9140-9148Article in journal (Refereed) Published
Abstract [en]

We present spectroelectrochemical sensing of the potassium ion (K+) at three very distinct analytical ranges-nanomolar, micromolar, and millimolar-when using the same ion-selective electrode (ISE) but interrogated under various regimes. The ISE is conceived in the all-solid-state format: an ITO glass modified with the conducting polymer poly(3-octylethiophene) (POT) and an ultrathin potassium-selective membrane. The experimental setup is designed to apply a potential in a three-electrode electrochemical cell with the ISE as the working electrode, while dynamic spectral changes in the POT film are simultaneously registered. The POT film is gradually oxidized to POT+, and this process is ultimately linked to K+ transfer at the membrane-sample interface, attending to electroneutrality requirements. The spectroelectrochemistry experiment provides two signals: a voltammetric peak and a transient absorbance response, with the latter of special interest because of its correspondence with the generated charge in the POT and thus with the ionic charge expelled from the membrane. By modifying how the ion analyte (K+ but also others) is initially accumulated into the membrane, we found three ranges of response for the absorbance: 10-950 nM for an accumulation-stripping protocol, 0.5-10 mu M in diffusion-controlled cyclic voltammetry, and 0.5-32 mM with thin-layer cyclic voltammetry. This wide response range is a unique feature, one that is rare to find for a sensor and indeed for any analytical technique. Accordingly, the developed sensor is highly appealing for many analytical applications, especially considering the versatility of samples and ion analytes that may be spotted.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2022
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-315682 (URN)10.1021/acs.analchem.2c01584 (DOI)000819483500001 ()35687727 (PubMedID)2-s2.0-85133523272 (Scopus ID)
Note

QC 20220715

Available from: 2022-07-15 Created: 2022-07-15 Last updated: 2023-09-04Bibliographically approved
4. Voltammetric Ion-Selective Electrodes in Thin-Layer Samples: The Case for Absolute Potassium Detection Using Ultrathin Membranes
Open this publication in new window or tab >>Voltammetric Ion-Selective Electrodes in Thin-Layer Samples: The Case for Absolute Potassium Detection Using Ultrathin Membranes
(English)Manuscript (preprint) (Other academic)
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:kth:diva-335227 (URN)
Note

QC 20230905

Available from: 2023-09-03 Created: 2023-09-03 Last updated: 2023-09-05Bibliographically approved

Open Access in DiVA

Summary(6216 kB)312 downloads
File information
File name FULLTEXT01.pdfFile size 6216 kBChecksum SHA-512
a63d7cf4917836945430b71325bb7a118275221dd602cfdc554d1a398eb4d7f6d7c7bad22e0f4e6aaae51432843013b1a841c2bfc4e659db9cf2dd4e11be92cc
Type summaryMimetype application/pdf

Authority records

Liu, Yujie

Search in DiVA

By author/editor
Liu, Yujie
By organisation
Applied Physical Chemistry
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1116 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf