kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Selective Ion Capturing via Carbon Nanotubes Charging
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0001-7941-2312
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0002-3858-8466
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0002-1221-3906
2022 (English)In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 94, no 21, p. 7455-7459Article in journal (Refereed) Published
Abstract [en]

We present a phenomenon consisting of the synergistic effects of a capacitive material, such as carbon nanotubes (CNTs), and an ion-selective, thin-layer membrane. CNTs can trigger a charge disbalance and propagate this effect into a thin-layer membrane domain under mildly polarization conditions. With the exceptional selectivity and the fast establishment of new concentration profiles provided by the thin-layer membrane, a selective ion capture from the solution is expected, which is necessarily linked to the charge generation on the CNTs lattice. As a proof-of-concept, we investigated an arrangement based on a layer of CNTs modified with a nanometer-sized, potassium-selective membrane to conform an actuator that is in contact with a thin-layer aqueous solution (thickness of 50 μm). The potassium ion content was fixed in the solution (0.1–10 mM range), and the system was operated for 120 s at −400 mV (with respect to the open circuit potential). A 10-fold decrease from the initial potassium concentration in the thin-layer solution was detected through either a potentiometric potassium-selective sensor or an optode confronted to the actuator system. This work is significant, because it provides empirical evidence for interconnected charge transfer processes in CNT–membrane systems (actuators) that result in controlled ion uptake from the solution, which is monitored by a sensor. One potential application of this concept is the removal of ionic interferences in a sample by means of the actuator to enhance precision of analytical assessments of a charged or neutral target in the sample with the sensor.

Place, publisher, year, edition, pages
American Chemical Society (ACS) , 2022. Vol. 94, no 21, p. 7455-7459
National Category
Analytical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-335370DOI: 10.1021/acs.analchem.2c00797ISI: 000807338400002PubMedID: 35579547Scopus ID: 2-s2.0-85131405157OAI: oai:DiVA.org:kth-335370DiVA, id: diva2:1794483
Funder
Swedish Research Council, VR-2017-4887
Note

QC 20230906

Available from: 2023-09-05 Created: 2023-09-05 Last updated: 2023-09-06Bibliographically approved
In thesis
1. Solving Analytical Challenges with Thin Layer Electrochemistry
Open this publication in new window or tab >>Solving Analytical Challenges with Thin Layer Electrochemistry
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The decentralization of chemical sensing to attain environmental-related information is today highly desirable to increase the knowledge on biological or geological events as well as effluents. The current state of the field moves toward submersible probes; chemical sensors implemented into submersible devices for quantifying analytes over extended times. However, many sensors are still not robust enough for such applications. Additionally, the detections of most analytes require reagent addition and other steps before analysis (i.e., pre-treatments). For such analyses to be implemented in decentralized measurements, it would be beneficial to find reagentless approaches to modify samples and avoid waste associated with the reagent addition. This thesis aimed to develop such strategies using different solid materials capable of imposing ion-transfer events (actuators) under electrochemical control, to achieve measuring the analytes in the same sample using chemical sensors. Both actuators and sensors were jointly employed in thin layer (or near thin layer) samples, inside newly designed 3D-printed cells. This allowed for small sample volumes (ca 100 µm thicknesses) down to 0.5 µL to be analyzed, and resulted in fast, non-diffusion limited measurements that facilitated the sensor-actuator concepts. 

First, acidification of thin layer samples using polyaniline (PANI) was investigated. By electrochemical oxidation of PANI, its molecular structure changed resulting in hydrogen ions (acid) being delivered to the thin layer sample within two minutes or less, shifting its pH from ca 8 down to 2–3. By combining PANI and pH-sensors, reliable detection of alkalinity in real and artificial water samples could be achieved for a period of two weeks and possibly more. Also, by combining the PANI-based acidification with planar optodes capable of measuring pH or CO2 with high spatial resolution, buffer capacity or dissolved inorganic carbon (DIC) gradients could be resolved in a 2D domain with sub-mm resolution. PANI-based acidification was tested for sensing several environmental samples, including freshwater plants, brackish water, seawater, and soil, presenting great versatility in analytical performance. 

Second, a concept of selective deionization of thin layer samples was developed. The importance of such a concept is related to the selectivity of ion-based measurements, where ions such as Li+ or NH4+ are difficult to detect in real samples because of interfering ions increasing their limit of detection (LOD). Non-faradic processes were explored to remove such interferents by using carbon nanotubes (CNTs) for modulating the ion transfer with the sample. To facilitate selective deionization to only remove one ion species, the CNTs were covered with ultra-thin ion-selective membranes (ISMs; ca 200 nm thick). The tandem of CNTs-ISM was found to be capable of selectively removing multiple different cations, proven with the monitoring from both potentiometric sensors and optodes additionally implemented into the thin layer sample. Overall, the CNTs-ISM tandem shows great promise for lowering the LOD of chemical sensors in complex matrixes such as biological or environmental samples, which could aid to decentralized measurements in the future.

Abstract [sv]

Införandet av kemiska sensorer för decentraliserade mätningar utanför laboratoriemiljö är idag eftersträvat för att öka kunskaperna kring människans påverkan på naturen, samt för att öka förståelsen kring biologiska och geologiska händelseförlopp i naturen. Idag riktas mycket fokus inom den analytiska kemin på att utveckla kemiska sensorer som kan kopplas på nedsänkbara sonder och direkt mäta halter av ämnen i naturliga vatten över en längre tid. De flesta kemiska sensorer som har utvecklats idag är dessvärre inte robusta nog för längre mätningar, och vissa ämnen kan inte mätas utan reagens tillförs provet. En lösning till denna utmaning skulle vara att finna reagenslösa lösningar för att justera provernas sammansättning inför analys. Denna avhandling hade som mål att utveckla sådana metodologier baserade på material vilka kan styra jontransporter under elektrokemisk kontroll (aktuatorer), samtidigt som deras förmåga att modulera dessa har kvantifierats med kemiska sensorer. Både aktuatorer och sensorer implementerades i tunnskiktsprover i 3D-printade celler. Detta medförde att mycket små volymer av prover (ca 100 µm tunna prover) ned till ca 0.5 µL kunde analyseras, vilket resulterade i snabba mätningar som inte var begränsade av diffusionen.

Först undersöktes materialet polyanilin (PANI) för att justera pH i tunnskiktsprover. När den elektrokemiska potentialen skiftar för PANI så ändras dess molekylära struktur, vilket leder till att vätejoner (syre) bindningar släps från materialet till tunnskiktsprovet, vilket sänker dess pH från ca 8 ner till 2-3. I kombination med en pH-elektrod i tunnskiktsprover kunde tillförlitliga alkalinitet-mätningar utföras i riktiga och artificiella prover över en period av två veckor, och möjligen ännu längre. Genom att kombinera PANI-försurningen med plana optoder som kunde mäta pH och CO2 med hög bildupplösning kunde koncentrationer av buffertkapacitet och totalt oorganiskt kol (DIC) mätas i 2D med en hög upplösning (mm>). Den PANI-baserade försurningen testades i diverse prover; på färskvatten växter, i bräckt vatten, havsvatten och i jordprover, vilket påvisar dess exceptionellt mångsidiga analytiska prestation.

Därefter utvecklades konceptet för selektiv avjonisering av tunnskiktsprover. Detta koncept är extra intressant när den ställs i kontexten att vissa jonmätningar inte kan utföras på grund utav att de störs ut av interferenser i provet vilket höjer deras detektionsgränser (LOD), vilket är fallet för Li+ och NH4+-sensorer. Icke-Faradiska processer utforskades baserade på kolnanorör (CNTs) för att modulera jonöverföringar. För att uppnå selektivitet för att avlägsna enbart en jonart så täcktes CNTs med ultra-tunna jonselektiva membran (ISMs; ca 200 nm). Resultaten påvisade att det är möjligt att selektivt avjonisera prov genom denna CNT-ISM tandem, och flera olika joner påvisades möjliga att undergå denna process med hjälp av potentiometriska sensorer och optoder implementerade i den 3D-printade tunnskiktscellen. Överlag visar denna CNTs-ISM tandem potential för att kunna sänka LODs för sensorer i komplexa matriser, såsom biologiska och miljöprover, vilket skulle kunna bidra till decentraliserade mätningar i framtiden.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 84
Series
TRITA-CBH-FOU ; 2023:35
Keywords
Thin Layer Electrochemistry, Polyaniline, Carbon nanotubes, Ion-selective electrodes, Ionophores, Electrochemical Sensors, Alkalinity, Deionization, Chemical Imaging, Tunnskiktselektrokemi, polyanilin, kolnanorör, jonselektiva elektroder, jonoforer, elektrokemiska sensorer, Alkalinitet, avjonisering, chemical imaging
National Category
Analytical Chemistry Materials Chemistry Physical Chemistry
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-335376 (URN)978-91-8040-666-6 (ISBN)
Public defence
2023-10-06, F3, Lindstedsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 2023-09-06

Available from: 2023-09-06 Created: 2023-09-05 Last updated: 2023-09-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Wiorek, AlexanderCuartero, MariaCrespo, Gaston A.

Search in DiVA

By author/editor
Wiorek, AlexanderCuartero, MariaCrespo, Gaston A.
By organisation
Applied Physical Chemistry
In the same journal
Analytical Chemistry
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 234 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf