kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A study of the autogenous Hydrogen-DRI slag and its impact on the dephosphorization of fossil-free steel at different oxygen potentials
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Process.ORCID iD: 0000-0002-2894-7672
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The present study comprises aspects related to the phosphate capacity, the dephosphorization of fossil-free steel, and the utilization of potential by-products. The focus is mainly given to the functions and impact of the autogenous H-DRI slag in the dephosphorization process and the possibility for future slag valorization.

At the outset, the applicability of the phosphate capacity concept on systems containing multivalent species is critically examined. For the examination, the variation in the slag structure depending on the oxygen potential was considered theoretically. To support the theoretical consideration, experiments were conducted to illustrate the dependence and to show the effect on the phosphate capacity. The results demonstrated a significant effect of the oxygen potential on the phosphate capacity. Consequently, the use of the concept for multivalent slags falls under serious question.

To better orientate the future steelmaking process, the dephosphorization power of slags related to the autogenous H-DRI slag was investigated experimentally. The CaO-MgO-SiO2-FeO system constituted the fully liquid slags, which were equilibrated with liquid iron at 1873 K. Further, the oxygen potential was fixed by closing the system. The dephosphorization power of the autogenous slag was found to be theoretically sufficient to refine the steel made from H-DRI from phosphorus adequately. Thus, it was concluded that the H-DRI slag could be used as a base for the EAF slag to save energy and material.

Due to the industrial novelty of the H-DRI material, little is known about the dephosphorization mechanism. Therefore, to facilitate a more efficient process design, the dephosphorization mechanism for H-DRI with different reduction degrees was studied under two different heat transfer conditions. Firstly, by heating and melting H-DRI in a poor heat transfer situation, i.e., in a gas phase at 1873 K, and secondly, under better conditions where the heat transfer is still insufficient for direct melting, i.e., by heating in a liquid slag at 1923 K. The melting process was found to influence the dephosphorization mechanism significantly. In the poor heat transfer situation, the dissolution of the phosphorus-bearing apatite phase was facilitated by the bulk movement of the autogenous slag, which occurred during the melting of the metal phase. In the better heat transfer situation, the bulk slag penetrated the pore network of the H-DRI, a process that was enhanced by the autogenous slag. Since a greater slag mass was available for dissolution, the steel made from H-DRI was dephosphorized already prior to melting.

Lastly, the possibility for vanadium extraction from an especially engineered autogenous H-DRI slag was investigated experimentally at 1873 K. For the production of high-quality ferrovanadium alloy, a feasible vanadium extraction requires the fulfillment of two demands. Phosphorus should be predominantly partitioned to the metal and vanadium to the slag. Thus, the experiments featured an acidic slag of the Al2O3-SiO2-FeOx-VzOy system and liquid iron as the metal phase. Also, to fix the oxygen potential, the system was closed. The dephosphorization power of the acidic slags was very low, within the investigated range, while vanadium was mostly partitioned to the slag. The proposed slag system could, therefore, provide an opportunity to utilize an especially engineered autogenous slag for vanadium extraction.

Abstract [sv]

Den föreliggande studien behandlar aspekter relaterade till fosfatkapacitet, fosforrening av fossilfritt stål samt användningen av potentiella biprodukter. Fokus ges huvudsakligen till den autogena H-DRI slaggens funktioner och påverkan på fosforreningsprocessen och dess möjliga framtida valorisering.

 

Inledningsvis granskas kritiskt tillämpandet av fosfatkapaciteten för system innehållandes transitionsmetaller. I granskningen beaktas teoretiskt variationen i slaggstrukturer beroende på syrepotential. För att underbygga den teoretiska diskussionen, utfördes experiment för att illustrera beroendet men också effekten på fosfatkapaciteten. Resultaten visade att syrepotentialen har en betydande inverkan på fosfatkapaciteten. Därmed ifrågasätts tillämpandet av fosfatkapaciteten.

 

För att bättre rikta den framtida ståltillverkningsprocessen undersöktes förmågan till fosforrening hos slagger relaterade till den autogena vätgas-DRI slaggen. Detta gjordes experimentellt vid 1873 K. I experimenten utgjorde CaO-MgO-SiO2-FeO systemet de fullt flytande slaggerna medan flytande järn utgjorde metallfasen. Vidare, genom att stänga systemet fixerades syrepotentialen. Baserat på de experimentella resultaten fastslogs det att förmågan till fosforrening var teoretiskt tillräcklig för adekvat raffinering. Detta innebär att den autogena vätgas-DRI slaggen kan användas som bas för en reaktorslagg i ljusbågsugnen som ett sätt att minska material- och energiåtgången.

 

För den industriella tillverkningen av stål är Vätgas-DRI ett nytt material. Därför har forskning bedrivits på fosforreningsmekanismerna som råder för raffinering av fossilfritt stål. För att facilitera en mer effektiv processdesign har fosforreningsmekanismerna studerats experimentellt. Vätgas-DRI med olika reduktionsgrader värmdes upp och smältes under två olika värmeöverföringsförhållanden, nämligen vid 1873 K under sämre värmeöverföring, dvs. i en gasfas, och vid 1923 K under bättre värmeöverföring dvs. i flytande slagg. En väsentlig skillnad i den verksamma mekanismen för fosforrening beroende på smältprocessen påvisades. Under dålig värmeöverföring löstes den fosforbärande apatitfasen upp genom bulkflödet av autogen slagg som skedde samtidigt som smältning av metallfasen. Emellertid, vid nedsänkning av vätgas-DRIn i flytande slagg skedde en inträngning av slagg i vätgas-DRI:s pornätverk. Denna infiltration förstärktes av den autogena slaggens förekomst. På grund av den större tillgängliga massan för upplösning av apatiten fosforrenades materialet redan innan smältning.

 

Till sist undersöktes experimentellt potentialen för vanadinextraktion från en autogen vätgas-DRI slagg i syfte att producera högkvalitativt ferrovanadin. Med detta syfte krävs för gångbar vanadinextraktion uppfyllandet av två huvudsakliga kriterier: den övervägande fördelningen av fosfor till metallfasen, och vanadin till slaggen. För experimenten användes därför en sur slagg bestående av Al2O3, SiO2, FeOx och VzOy i kombination med flytande järn som metallfas. För att också fixera syrepotentialen användes ett stängt system. Förmågan till fosforrening visades vara väldigt låg hos den sura slaggen oavsett syrepotential, medan vanadin återfanns mestadels i slaggen. Sålunda kan användning av en speciellt designad sur autogen slagg som ett råmaterial för vanadinextraktion vara möjlig.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. , p. 139
Series
TRITA-ITM-AVL ; 2023:25
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-336625ISBN: 978-91-8040-685-7 (print)OAI: oai:DiVA.org:kth-336625DiVA, id: diva2:1797644
Public defence
2023-10-06, Sal F3 / https://kth-se.zoom.us/j/62912774702, Lindstedtsvägen26, Stockholm, 09:00 (English)
Opponent
Supervisors
Available from: 2023-09-15 Created: 2023-09-15 Last updated: 2023-09-28Bibliographically approved
List of papers
1. The Laboratory Study of Metallurgical Slags and the Reality
Open this publication in new window or tab >>The Laboratory Study of Metallurgical Slags and the Reality
Show others...
2022 (English)In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 93, no 3, article id 2100132Article in journal (Refereed) Published
Abstract [en]

The development of new materials and their production processes along with the environmental constraints demand new data of high quality, especially thermodynamic and physical property data. As slags play a crucial role in metallurgical processes and recycling, the need of better understanding of the reaction mechanisms between slag and metal is also increasingly felt. High precision data and better understanding of the reaction mechanism require efficient collaboration between the researchers in the laboratory and in the industries. Unfortunately, in some cases, the reported data are not obtained in well-controlled experimental conditions. Without the knowledge of the experimental conditions, the use of the data in industrial practice would possibly lead to unintended results. In other cases, the measurements themselves, even their principles, are questionable. This review article addresses how to make the laboratory investigation more relevant to the industrial reality. Some existing uncertainties in the laboratory studies are also discussed. To help a sensible discussion, some specially designed experiments are conducted to support the argument. The review is focused on slag properties (namely, sulfide capacity, phosphate capacity, apparent viscosity, and apparent interfacial tension) and studies of interfacial slag phenomena.

Place, publisher, year, edition, pages
Wiley, 2022
Keywords
interfacial phenomena, slag, slag foaming, thermochemical properties, thermophysical properties, Laboratories, Metallurgy, Sulfur compounds, Designed experiments, Environmental constraints, Experimental conditions, Industrial practices, Laboratory investigations, Metallurgical process, Metallurgical slags, Production process, Slags
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-309683 (URN)10.1002/srin.202100132 (DOI)000657677300001 ()2-s2.0-85107178226 (Scopus ID)
Note

QC 20220315

Available from: 2022-03-15 Created: 2022-03-15 Last updated: 2023-09-15Bibliographically approved
2. Some Aspects of the Melting and Dephosphorization Mechanism of Hydrogen‐DRI
Open this publication in new window or tab >>Some Aspects of the Melting and Dephosphorization Mechanism of Hydrogen‐DRI
2023 (English)In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344XArticle in journal (Refereed) Published
Abstract [en]

To meet the future environmental challenges, hydrogen direct reduced iron (H-DRI) is expected to constitute the principal material for virgin steel production. For an efficient value chain, knowledge of the melting mechanism and dephosphorization mechanism of H-DRI is needed. The in situ melting behavior, the melting mechanism, and the dephosphorization mechanism during heating of H-DRI are investigated experimentally at 1773 and 1873 K. It is found that the melting rate of H-DRI varies with the reduction degree (91–99.5%), increasing with decreasing reduction degree. An autogenous slag forms during heating and flows through the pores of the H-DRI, thus increasing its effective thermal conductivity. The fraction of filled pores varies with reduction degree explaining the difference in melting rate. At this stage, the dissolution of apatite is initiated and completed upon melting of the metal phase. A gradual reversion of phosphorus from the autogenous slag to the liquid metal is observed after complete melting. The rate of reversion is discussed based on the properties of the H-DRI, for example, reduction degree and carbon addition.

Place, publisher, year, edition, pages
Wiley, 2023
Keywords
dephosphorization, hydrogen direct reduced iron, melting mechanism
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-336624 (URN)10.1002/srin.202300064 (DOI)001020959100001 ()2-s2.0-85164131680 (Scopus ID)
Note

QC 20230915

Available from: 2023-09-15 Created: 2023-09-15 Last updated: 2024-03-15Bibliographically approved
3. Experimental Study on Phosphorus Partitions Between Liquid Iron and Liquid Slags Based on DRI
Open this publication in new window or tab >>Experimental Study on Phosphorus Partitions Between Liquid Iron and Liquid Slags Based on DRI
2020 (English)In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 51, no 2, p. 786-794Article in journal (Refereed) Published
Abstract [en]

Phosphorus partition between liquid iron and CaO-SiO2-MgO-FeOx slags have been investigated experimentally. Fe doped with Fe3P was equilibrated, at 1873 K, in a closed system, with a fully liquid, MgO saturated slag in a dense-sintered MgO crucible. Synthetic slags with low CaO/SiO2 ratio (1 to 1.32) and varying FeOx concentrations (10 to 30 wt pct) constituted the slag phase. P2O5 concentrations in the slag varied between 0.3 and 1.5 wt pct for added phosphorus concentrations of 0.06 to 0.316 wt pct. Phosphorus partition has been found to increase with increasing CaO/SiO2 ratios. Phosphorus partition increased with increasing oxygen potential over the investigated oxygen partial pressure range, pO2=1.4x10-5to4.8x10-5(Pa). The present experimental result has been compared with literature data. The effect of slag basicity on the dephosphorization power of slags has been discussed based on this comparison. The minimum amount of slag to achieve sufficient dephosphorization using DRI has also been calculated and discussed.

Place, publisher, year, edition, pages
Springer, 2020
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-271515 (URN)10.1007/s11663-020-01787-y (DOI)000516244900006 ()2-s2.0-85079737999 (Scopus ID)
Note

QC 20200427

Available from: 2020-04-27 Created: 2020-04-27 Last updated: 2024-03-15Bibliographically approved

Open Access in DiVA

fulltext(25533 kB)729 downloads
File information
File name FULLTEXT01.pdfFile size 25533 kBChecksum SHA-512
2759db3b798d862de1c4fdb37085c7657181bc114f307eb3f6b41c4c7efe44a75f07f27c9e8bdb41bde882a4f0ae61e6b256853a4da5ef8edb534237287a10a1
Type fulltextMimetype application/pdf

Other links

http:// Du som saknar dator/ datorvana kan kontakta service@itm.kth.se (English)

Search in DiVA

By author/editor
Huss, Joar
By organisation
Process
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 730 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1653 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf