A study of the autogenous Hydrogen-DRI slag and its impact on the dephosphorization of fossil-free steel at different oxygen potentials
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The present study comprises aspects related to the phosphate capacity, the dephosphorization of fossil-free steel, and the utilization of potential by-products. The focus is mainly given to the functions and impact of the autogenous H-DRI slag in the dephosphorization process and the possibility for future slag valorization.
At the outset, the applicability of the phosphate capacity concept on systems containing multivalent species is critically examined. For the examination, the variation in the slag structure depending on the oxygen potential was considered theoretically. To support the theoretical consideration, experiments were conducted to illustrate the dependence and to show the effect on the phosphate capacity. The results demonstrated a significant effect of the oxygen potential on the phosphate capacity. Consequently, the use of the concept for multivalent slags falls under serious question.
To better orientate the future steelmaking process, the dephosphorization power of slags related to the autogenous H-DRI slag was investigated experimentally. The CaO-MgO-SiO2-FeO system constituted the fully liquid slags, which were equilibrated with liquid iron at 1873 K. Further, the oxygen potential was fixed by closing the system. The dephosphorization power of the autogenous slag was found to be theoretically sufficient to refine the steel made from H-DRI from phosphorus adequately. Thus, it was concluded that the H-DRI slag could be used as a base for the EAF slag to save energy and material.
Due to the industrial novelty of the H-DRI material, little is known about the dephosphorization mechanism. Therefore, to facilitate a more efficient process design, the dephosphorization mechanism for H-DRI with different reduction degrees was studied under two different heat transfer conditions. Firstly, by heating and melting H-DRI in a poor heat transfer situation, i.e., in a gas phase at 1873 K, and secondly, under better conditions where the heat transfer is still insufficient for direct melting, i.e., by heating in a liquid slag at 1923 K. The melting process was found to influence the dephosphorization mechanism significantly. In the poor heat transfer situation, the dissolution of the phosphorus-bearing apatite phase was facilitated by the bulk movement of the autogenous slag, which occurred during the melting of the metal phase. In the better heat transfer situation, the bulk slag penetrated the pore network of the H-DRI, a process that was enhanced by the autogenous slag. Since a greater slag mass was available for dissolution, the steel made from H-DRI was dephosphorized already prior to melting.
Lastly, the possibility for vanadium extraction from an especially engineered autogenous H-DRI slag was investigated experimentally at 1873 K. For the production of high-quality ferrovanadium alloy, a feasible vanadium extraction requires the fulfillment of two demands. Phosphorus should be predominantly partitioned to the metal and vanadium to the slag. Thus, the experiments featured an acidic slag of the Al2O3-SiO2-FeOx-VzOy system and liquid iron as the metal phase. Also, to fix the oxygen potential, the system was closed. The dephosphorization power of the acidic slags was very low, within the investigated range, while vanadium was mostly partitioned to the slag. The proposed slag system could, therefore, provide an opportunity to utilize an especially engineered autogenous slag for vanadium extraction.
Abstract [sv]
Den föreliggande studien behandlar aspekter relaterade till fosfatkapacitet, fosforrening av fossilfritt stål samt användningen av potentiella biprodukter. Fokus ges huvudsakligen till den autogena H-DRI slaggens funktioner och påverkan på fosforreningsprocessen och dess möjliga framtida valorisering.
Inledningsvis granskas kritiskt tillämpandet av fosfatkapaciteten för system innehållandes transitionsmetaller. I granskningen beaktas teoretiskt variationen i slaggstrukturer beroende på syrepotential. För att underbygga den teoretiska diskussionen, utfördes experiment för att illustrera beroendet men också effekten på fosfatkapaciteten. Resultaten visade att syrepotentialen har en betydande inverkan på fosfatkapaciteten. Därmed ifrågasätts tillämpandet av fosfatkapaciteten.
För att bättre rikta den framtida ståltillverkningsprocessen undersöktes förmågan till fosforrening hos slagger relaterade till den autogena vätgas-DRI slaggen. Detta gjordes experimentellt vid 1873 K. I experimenten utgjorde CaO-MgO-SiO2-FeO systemet de fullt flytande slaggerna medan flytande järn utgjorde metallfasen. Vidare, genom att stänga systemet fixerades syrepotentialen. Baserat på de experimentella resultaten fastslogs det att förmågan till fosforrening var teoretiskt tillräcklig för adekvat raffinering. Detta innebär att den autogena vätgas-DRI slaggen kan användas som bas för en reaktorslagg i ljusbågsugnen som ett sätt att minska material- och energiåtgången.
För den industriella tillverkningen av stål är Vätgas-DRI ett nytt material. Därför har forskning bedrivits på fosforreningsmekanismerna som råder för raffinering av fossilfritt stål. För att facilitera en mer effektiv processdesign har fosforreningsmekanismerna studerats experimentellt. Vätgas-DRI med olika reduktionsgrader värmdes upp och smältes under två olika värmeöverföringsförhållanden, nämligen vid 1873 K under sämre värmeöverföring, dvs. i en gasfas, och vid 1923 K under bättre värmeöverföring dvs. i flytande slagg. En väsentlig skillnad i den verksamma mekanismen för fosforrening beroende på smältprocessen påvisades. Under dålig värmeöverföring löstes den fosforbärande apatitfasen upp genom bulkflödet av autogen slagg som skedde samtidigt som smältning av metallfasen. Emellertid, vid nedsänkning av vätgas-DRIn i flytande slagg skedde en inträngning av slagg i vätgas-DRI:s pornätverk. Denna infiltration förstärktes av den autogena slaggens förekomst. På grund av den större tillgängliga massan för upplösning av apatiten fosforrenades materialet redan innan smältning.
Till sist undersöktes experimentellt potentialen för vanadinextraktion från en autogen vätgas-DRI slagg i syfte att producera högkvalitativt ferrovanadin. Med detta syfte krävs för gångbar vanadinextraktion uppfyllandet av två huvudsakliga kriterier: den övervägande fördelningen av fosfor till metallfasen, och vanadin till slaggen. För experimenten användes därför en sur slagg bestående av Al2O3, SiO2, FeOx och VzOy i kombination med flytande järn som metallfas. För att också fixera syrepotentialen användes ett stängt system. Förmågan till fosforrening visades vara väldigt låg hos den sura slaggen oavsett syrepotential, medan vanadin återfanns mestadels i slaggen. Sålunda kan användning av en speciellt designad sur autogen slagg som ett råmaterial för vanadinextraktion vara möjlig.
Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. , p. 139
Series
TRITA-ITM-AVL ; 2023:25
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-336625ISBN: 978-91-8040-685-7 (print)OAI: oai:DiVA.org:kth-336625DiVA, id: diva2:1797644
Public defence
2023-10-06, Sal F3 / https://kth-se.zoom.us/j/62912774702, Lindstedtsvägen26, Stockholm, 09:00 (English)
Opponent
Supervisors
2023-09-152023-09-152023-09-28Bibliographically approved
List of papers