kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Change point detection with adaptive measurement schedules for network performance verification
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control). Ericsson. (Statistical Learning and Control)
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control). (Statistical Learning and Control)ORCID iD: 0000-0002-4679-4673
Ericsson. (Uppsala University)ORCID iD: 0000-0003-3743-9431
(English)Manuscript (preprint) (Other academic)
Abstract [en]

When verifying that a communications network fulfills its specified performance, it is critical to note sudden shifts in network behavior as quickly as possible. Change point detection methods can be useful in this endeavor, but classical methods rely on measuring with a fixed measurement period, which can often be suboptimal in terms of measurement costs. In this paper, we extend the existing framework of change point detection with a notion of physical time. Instead of merely deciding when to stop, agents must now also decide at which future time to take the next measurement. Agents must now minimize the necessary number of measurements pre- and post-change, while maintaining a trade-off between post-change delay and false alarm rate. We establish, through this framework, the suboptimality of typical periodic measurements and propose a simple alternative, called crisis mode agents. We show analytically that crisis mode agents significantly outperform periodic measurements schemes. We further verify this in numerical evaluation, both on an array of synthetic change point detection problems as well as on the problem of detecting traffic load changes in a 5G test bed through end-to-end RTT measurements. 

Keywords [en]
Changepoint detection, Statistical Learning, Network management, Network monitoring
National Category
Control Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-336658OAI: oai:DiVA.org:kth-336658DiVA, id: diva2:1797759
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20230915

Available from: 2023-09-15 Created: 2023-09-15 Last updated: 2023-09-15Bibliographically approved
In thesis
1. Adaptive Measurement Strategies for Network Optimization and Control
Open this publication in new window or tab >>Adaptive Measurement Strategies for Network Optimization and Control
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Alternative title[sv]
Adaptiva Mätstrategier för Optimering och Reglering av Nätverk
Abstract [en]

The fifth generation networks is rapidly becoming the new network standardand its new technological capabilities are expected to enable a far widervariety of services compared to the fourth generation networks. To ensurethat these services can co-exist and meet their standardized requirements,the network’s resources must be provisioned, managed and reconfigured ina far more complex manner than before. As such, it is no longer sufficientto select a simple, static scheme for gathering the necessary information totake decisions. Instead, it is necessary to adaptively, with regards to networksystem dynamics, trade-off the cost in terms of power, CPU and bandwidthconsumption of the taken measurements to the value their information brings.Orchestration is a wide field, and the way to quantify the value of a givenmeasurement heavily depends on the problem studied. As such, this thesisaddresses adaptive measurement schemes for a number of well-defined networkoptimization problems. The thesis is presented as a compilation, whereafter an introduction detailing the background, purpose, problem formulation,methodology and contributions of our work, we present each problemseparately through the papers submitted to several conferences.

First, we study the problem of optimal spectrum access for low priorityservices. We assume that the network manager has limited opportunitiesto measure the spectrum before assigning one (if any) resource block to thesecondary service for transmission, and this measurement has a known costattached to it. We study this framework through the lens of multi-armedbandits with multiple arm pulls per decision, a framework we call predictivebandits. We analyze such bandits and show a problem specific lower bound ontheir regret, as well as design an algorithm which meets this regret asymptotically,studying both the case where measurements are perfect and the casewhere the measurement has noise of known quantity. Studying a syntheticsimulated problem, we find that it performs considerably better compared toa simple benchmark strategy.

Secondly, we study a variation of admission control where the controllermust select one of multiple slices to enter a new service into. The agentdoes not know the resources available in the slices initially, and must insteadmeasure these, subject to noise. Mimicking three commonly used admissioncontrol strategies, we study this as a best arm identification problem, whereone or multiple arms is ”correct” (the arm chose by the strategy if it had fullinformation). Through this framework, we analyze each strategy and devisesample complexity lower bounds, as well as algorithms that meet these lowerbounds. In simulations with synthetic data, we show that our measurementalgorithm can vastly reduce the number of required measurements comparedto uniform sampling strategies.

Finally, we study a network monitoring system where the controller mustdetect sudden changes in system behavior such as batch traffic arrivals orhandovers, in order to take future action. We study this through the lensof change point detection but argue that the classical framework is insufficientfor capturing both physical time aspects such as delay as well as measurementcosts independently, and present an alternative framework whichiidecouples these, requiring more sophisticated monitoring agents. We show,both through theory and through simulation with both synthetic data anddata from a 5G testbed, that such adaptive schedules qualitatively and quantitativelyimprove upon classical change point detection schemes in terms ofmeasurment frequency, without losing classical optimality guarantees such asthe one on required measurements post change.

Abstract [sv]

Femte generationens nätverk håller snabbt på att bli den nya standarden och dess teknologiska förmågor förväntas bereda väg för en avsevärt större variation av tjänster jämfört med fjärde generationens nätverk. För att se till att dessa tjänster kan samexistera och möta sina standardiserade krav måste nätverkens resurser provisioneras, hanteras och omkonfigureras på ett mycket mer komplext vis än tidigare. Det är därmed inte längre tillräckligt att välja en simpel, statisk plan för att samla den nödvändiga information som krävs för att ta beslut. Istället behöver man adaptivt, med hänsyn till nätversystemens dynamik, avväga mätningarnas kostnad i termer av effekt-, CPU- och bandbreddskonsumtion mot det värde som de medför. Den här sortens nätverksorkestrering är ett brett fält, och hur mätningarnas värde ska kvantifieras beror i hög grad på vilket optimeringsproblem som studeras. Således bemöter den här avhandlningen adaptiva mätplaner för ett antal väldefinerade optimeringsproblem. Avhandlingen tar formen av en sammanlänkning, där följandes en introduktion som beskriver bakgrund, syfte, problemformulering, metodologi och forskningsbidrag så presenterar vi varje problem separat genom de artiklar vi inlämnat till olika konferenser.

Först studerar vi optimal spektrumaccess för lågprioritetstjänster. Vi antar att nätverksregulatorn har begränsat med möjligheter att mäta spektrumanvändning innan den tillger som mest ett resursblock till tjänsten med lägre prioritet att skicka data på, och de här mätningarna har en känd kostnad. Vi studerar det här ramverket från perspektivet av flerarmade banditer med flera armdragningar per beslut, ett ramverk vi benämner förutsägande banditer (predictive bandits). Vi analyserar sådana banditer och visar en problemspecifik undre gräns på dess inlärningsförlust, samt designar en algorithm som presterar lika bra som denna gräns i den asymptotiska regimen. Vi studerar fallet där mätningarna är perfekta såväl som fallet där mätningarna har brus med känd storlek. Genom att studera ett syntetiskt simulerat problem av detta slag finner vi att vår algoritm presterar avsevärt bättre jämfört med en simplare riktmärkesstrategi.

Därefter studerar vi en variation av tillträdeskontroll, där en regulator måste välja en av ett antal betjänter att släppa in en ny tjänst till (om någon alls). Agenten vet ursprungligen inte vilka resurser som finns betjänterna tillgängliga, utan måste mäta detta med brusiga mätningar. Vi härmar tre vanligt använda tillträdesstrategier och studerar detta som ett bästa-arms identifieringsproblem, där en eller flera armar är "korrekta" (det vill säga, de armar som hade valts av tillträdesstrategin om den hade haft perfekt kännedom). Med det här ramverket analyserar vi varje strategi och visar undre gränser på antalet mätningar som krävs, och skapar algoritmer som möter dessa gränser. I simuleringar med syntetisk data visar vi att våra mätalgoritmer kan drastiskt reducera antalet mätningar som krävs jämfört med jämlika mätstrategier.

Slutligen studerar vi ett övervakningssystem där agenten måste upptäcka plötsliga förändringar i systemets beteende såsom förändringar i trafiken eller överräckningar mellan master, för att kunna agera därefter. Vi studerar detta med ramverket förändringsdetektion, men argumenterar att det klassiska ramverket är otillräckligt för att bemöta aspekter berörande fysisk tid (som fördröjning) samtidigt som den bemöter  mätningarnas kostnad. Vi presenterar därmed ett alternativt ramverk som frikopplar de två, vilket i sin tur kräver mer sostifikerade övervakningssystem. Vi visar, genom både teori och simulering med både syntetisk och experimentell data, att sådana adaptiva mätscheman kan förbättra mätfrekvensen jämfört med klassiska periodiska mätscheman, både kvalitativt och kvantitativt, utan att förlora klassiska optimalitetsgarantier såsom det på antalet mätningar som behövs när förändringen har skett. 

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. p. viii, 102
Series
TRITA-EECS-AVL ; 2023:62
Keywords
Network Optimization, Network Management, Network Orchestration, Multi-armed Bandits, Admission Control, Change Point Detection, Statistical Learning
National Category
Control Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-336602 (URN)978-91-8040-691-8 (ISBN)
Presentation
2023-10-06, Q2, Malvinas Väg 10, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20230915

Available from: 2023-09-15 Created: 2023-09-15 Last updated: 2023-09-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Lindståhl, SimonProutiere, AlexandreJohnsson, Andreas

Search in DiVA

By author/editor
Lindståhl, SimonProutiere, AlexandreJohnsson, Andreas
By organisation
Decision and Control Systems (Automatic Control)
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 139 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf