kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Dual-Lens Approach to Loss Given Default Estimation: Traditional Methods and Variable Analysis
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
En metod med två linser för att uppskatta Loss Given Default: Traditionella metoder och variabelanalys (Swedish)
Abstract [en]

This report seeks to thoroughly examine different approaches to estimating Loss Given Default through a comparison of traditional estimation methods, as well as a deeper variable analysis on micro, small, and medium-sized companies using primarily regression decision trees. The comparative study concluded that estimating loss given default depends heavily on business-specific factors and data variety. While regression models offer interpretability and machine learning techniques offer superior prediction, model selection should balance complexity, computational demands, implementation ease, and overall performance. From the variable analysis, loan size and guarantor property ownership emerged as key drivers for a lower Loss Given Default.

Abstract [sv]

Denna rapport syftar till att grundligt undersöka olika metoder för att uppskatta Loss Given Default genom en jämförelse av traditionella skattningsmetoder samt en djupare variabelanalys av bolag med hjälp av främst regressionsbeslutsträd. I den jämförande studien drogs slutsatsen att uppskattningen av Loss Given Default beror i hög grad på företagsspecifika faktorer och olika typer av data. Medan regressionsmodeller erbjuder tolkningsmöjligheter och maskininlärningstekniker erbjuder överlägsna uppskattningar, bör valet av modell balansera komplexitet, beräkningskrav, enkelhet i genomförandet och övergripande prestanda. I variabelanalysen framkom lånestorlek och borgensmannens fastighetsinnehav som viktiga drivkrafter för en lägre Loss Given Default.

Place, publisher, year, edition, pages
2023. , p. 67
Series
TRITA-SCI-GRU ; 2023:317
Keywords [en]
Loss given default, estimering, jämförande studie, variabelanalys, kreditförvaltning, utlåning till små och medelstora företag, riskanalys
Keywords [sv]
Loss given default, estimering, jämförande studie, variabelanalys, kreditförvaltning, utlåning till små och medelstora företag, riskanalys
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-337192OAI: oai:DiVA.org:kth-337192DiVA, id: diva2:1800544
External cooperation
Confidential
Subject / course
Financial Mathematics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2023-09-27 Created: 2023-09-27 Last updated: 2023-09-27Bibliographically approved

Open Access in DiVA

fulltext(642 kB)562 downloads
File information
File name FULLTEXT01.pdfFile size 642 kBChecksum SHA-512
18217f223c1c1b4615bf88352364b20f1e93ec1dda576fb0fd9ca49938850d33e7641fe9ac6e2856869a1ec51946d09e520e2f3847fd2fc0ce1acdc0df01c6ca
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 562 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 403 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf