kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CFD Study of Molten Pool Convection in a Reactor Vessel during a Severe Accident
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

During severe accidents in nuclear reactors, the core and internal structures can melt down and relocate into the reactor pressure vessel (RPV) lower head (LH) forming there a stratified molten corium pool. The pool generally consists of superheated oxidic and metallic liquid layers imposing thermo-mechanical loads on the RPV wall. The in-vessel retention (IVR) strategy employs external cooling with water to maintain RPV integrity. Investigating the thermo-fluid behaviour of corium and predicting heat flux distribution on the vessel wall are crucial. The molten pool exhibits natural convection, which can typically consist of two stratified layers. There exists internally heated (IH) natural convection in the oxidic layer and Rayleigh-Bénard (RB) convection in the surface metallic layer.

This study starts by illustrating the mathematical models that involve the numerical study of natural convection flow in molten corium. A verification work of the model has been done using a previous direct numerical simulation (DNS) study, and the results show good agreement. In addition, a scaling theory of the natural convection flow is demonstrated to facilitate the pre-estimation based on the Rayleigh number (Ra) and Prandtl number (Pr). After that, the numerical approaches involved in the numerical simulation of the corium are illustrated, especially focusing on the DNS method. A DNS mesh strategy is proposed in the form of a pipeline from the pre-estimation to the post-check. A scalability study of Nek5000 is performed on four different HPC clusters based on a DNS case of the IH molten convection in a hemispherical geometry with Ra=1.6×1011. The results show a super-liner speedup property of Nek5000 on each cluster within a certain range.

Then, three numerical studies focusing on turbulent natural convection flow within both the oxidic and metallic layers of corium are demonstrated and discussed. Through these simulations, the thermos-fluid behaviour of the system is examined in detail, including flow configuration, temperature distribution, heat flux profiles on cooling boundaries, and turbulent quantities.

1. A DNS investigation is performed on the IH molten pool convection within a hemispherical domain, employing a Rayleigh number of 1.6×1011 and a Prandtl number of 0.5. The results show a turbulent flow characterized by three distinct regions, consistent with the observation from the BALI experiments. Detailed information regarding turbulence, including turbulent kinetic energy (TKE), turbulent heat flux (THF), and temperature variance, is presented. Furthermore, the study offers comprehensive 3D heat flux distributions along the boundaries, showing heat flux fluctuations along the top boundary due to nearby turbulent eddies and a nonlinear increase in heat flux along the curved boundary from bottom to top.

2. A numerical study investigates the effect of Prandtl number on the natural convection of an IH molten pool in a 3D semi-circular test section. Prandtl numbers of 3.11, 1.0, and 0.5 are considered, with a Ra= 6.54×1011. Smaller Prandtl numbers result in more vigorous turbulent motion and a thicker layer of intense turbulent mixing in the upper region. The descending flow extends further down the bottom, creating a stronger circulation at the bottom with smaller Pr. Additionally, smaller Pr leads to more thermal stripping structures and less stable stratification layers. Comparing heat fluxes on the top and curved walls reveals higher fluctuation frequency with smaller Pr for heat fluxes to the top boundary. However, the maximum heat fluxes to the side walls are lower with smaller Pr.

3. A numerical study investigates the turbulent natural convection in a 3D fluid layer based on the BALI-Metal 8U experiment. Different methods, including DNS and three Reynolds-averaged Navier-Stokes (RANS) models, are employed. The results are compared with experimental data, and the performance of the RANS models is evaluated using DNS as a reference. DNS reproduces a two-distinct region flow structure observed in experiments, while the k-ω SST model exhibits similar flow patterns and TKE profiles. However, all simulations overpredict temperature compared to experimental data, with DNS providing the closest results. The DNS results also achieve better agreement with experimental data in terms of heat flux distribution and energy balance, specifically capturing the transient maximum heat flux on the lateral cooling wall. This transient behaviour plays a crucial role in accurately estimating the ‘focusing effect’.

Abstract [sv]

Vid svåra kärnkraftsreaktorhaverier kan härdar och interna strukturer smälta och bilda en skiktad pool av härdsmälta i reaktortankens (RPV) nedre plenum (LH). Denna härdsmälta består vanligtvis av överhettade oxidiska och metalliska vätskeskikt, vilket skapar termomekaniska påfrestningar på reaktortankens väggar. För att bevara integriteten hos reaktortanken används extern kylning med vatten, en teknik som kallas IVR-strategin (In-vessel Retention). En avgörande aspekt av säkerhetsstudier är att förstå och förutsäga hur värmeflödet beter sig inom härdsmältpoolen. Naturlig konvektion är en viktig process som inträffar i poolen, och den delas upp i två skikt: internuppvärmd (IH) naturlig konvektion i oxidskiktet och Rayleigh-Bénard (RB) konvektion i det ytliga metallskiktet.

Studien börjar med att beskriva de matematiska modellerna som används för att studera naturlig konvektion i härdsmältan. Dessa modeller har validerats genom att jämföra deras resultat med tidigare utförda direkt numerisk simulering (DNS), och det finns en god överensstämmelse mellan dem. Dessutom presenteras en skalningsteori som gör det möjligt att uppskatta naturlig konvektion baserat på Rayleigh-talet (Ra) och Prandtl-talet (Pr).

I nästa steg beskrivs de numeriska metoderna som används för att simulera härdsmältan, särskilt DNS-metoden. En DNS-nätstrategi föreslås, som omfattar allt från förhandsuppskattning till efterhandskontroll. En skalbarhetsstudie utförs med hjälp av Nek5000 på fyra olika högpresterande datorkluster, baserat på ett DNS-fall av IH-smältkonvektion i en hemisfärisk geometri med Ra=1,6×1011 och resultaten visar att Nek5000 har en imponerande hastighetsökningsegenskap på varje kluster inom ett specifikt intervall.

Slutligen genomförs tre numeriska studier som fokuserar på turbulent naturlig konvektion i både oxidiska och metalliska skikt av härdsmältan. Dessa simuleringar ger detaljerad information om systemets värmeflödesbeteende, inklusive flödeskonfiguration, temperaturfördelning, värmeflödesprofiler vid kylgränser och turbulenta egenskaper.

1. I denna del av studien utfördes en DNS-undersökning av naturlig konvektion i den IH härdsmältsamlingen i en hemisfärisk domän med ett Rayleigh-tal på 1,6×1011 och ett Prandtl-tal på 0,5. Resultaten visade att flödet var turbulent och delades in i tre distinkta regioner, vilket överensstämde med observationer från BALI-experimenten. Detta innebär att de utförda DNS-simuleringarna framgångsrikt reproducerade det observerade beteendet i experimentet. Studien presenterar detaljerad information om turbulensen i systemet, inklusive turbulent kinetisk energi (TKE), turbulent värmeflöde (THF) och temperaturavvikelse. Dessutom tillhandahöll studien omfattande 3D-värmeflödesfördelningar längs avgränsningarna. Det observerades fluktuationer längs den övre avgränsningen, och dessa fluktuationer tillskrevs närvaron av närliggande turbulenta virvlar och en icke-linjär ökning av värmeflödet längs den böjda avgränsningen från botten till toppen

2. I en numerisk studie undersöks effekten av Prandtl-talet på den naturliga konvektionen i den IH härdsmältsamlingen i en halvcirkelformad 3D-testsektion. Studien omfattade olika Prandtl-tal (3,11, 1,0 och 0,5) vid en konstant Rayleigh-talet (Ra) på 6,54×1011. Prandtl-talet påverkade konvektionen och turbulensen i härdsmältan betydligt. Lägre Prandtl-tal ledde till mer intensiva turbulenta strömningar och en tjockare turbulent blandningszon i den övre delen av härdsmältan. Det nedåtgående flödet i härdsmältan sträckte sig längre ner på botten vid lägre Prandtl-tal. Detta resulterade i en kraftigare cirkulation längs botten av härdsmältan. Dessutom Vid lägre Prandtl-tal observerades fler strukturer med s.k. ’thermal-stripping’, vilket innebär att varma och kalla fluidlager kan blanda sig mer intensivt och skapa mindre stabila skiktade lager i härdsmältan. Jämförelsen av värmeflöden på de övre och böjda väggarna visade att fluktueringsfrekvensen var högre med lägre Prandtl-tal för värmeflöden till den övre gränsen. Detta indikerar en ökad turbulens i den övre delen av härdsmältan vid lägre Prandtl-tal. Å andra sidan, de maximala värmeflödena till sidoväggarna var lägre vid lägre Prandtl-tal. Detta kan vara resultatet av den ökade turbulensen i den övre delen av härdsmältan som stör de laterala värmeflödesmönstren. 

3. I den tredje numeriska studien undersöktes den turbulenta naturliga konvektionen i ett 3D-flytandeskikt baserat på BALI-Metal 8U-experimentet. Studien använde olika numeriska metoder, inklusive DNS och tre olika Reynolds-averaged Navier-Stokes-modeller (RANS). Resultaten av dessa simuleringar jämfördes med experimentella data från BALI-Metal 8U-experimentet, och RANS-modellernas prestanda utvärderades med DNS som referens. DNS-simuleringarna återskapade en flödesstruktur med två tydliga regioner, vilket överensstämde med det som observerades i experimentet. k-ω SST-modellen, visade liknande flödesmönster och TKE-profiler jämfört med DNS-resultaten. Alla simuleringar, inklusive, överuppskattade temperaturen jämfört med de experimentella data. DNS-resultaten visade en bättre överensstämmelse med experimentella data när det gällde värmeflödesfördelning och energibalans. Särskilt registrerade DNS-resultaten det tillfälliga maximala värmeflödet på den laterala kylväggen. Detta beteende är viktigt att korrekt uppskatta fokuseringseffekten.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 69
Series
TRITA-SCI-FOU ; 2023:48
Keywords [en]
Severe accident, Corium, Natural convection, Turbulence, Scalability, Direct numerical simulation (DNS).
Keywords [sv]
Svåra haverier, härdsmälta, naturlig konvektion, turbulens, skalbarhet, direkt numerisk simulering (DNS).
National Category
Engineering and Technology
Research subject
Physics
Identifiers
URN: urn:nbn:se:kth:diva-337292ISBN: 978-91-8040-706-9 (print)OAI: oai:DiVA.org:kth-337292DiVA, id: diva2:1801290
Public defence
2023-10-18, FA32, AlbaNova University Center, Roslagstullsbaken 21, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2023-09-29

Available from: 2023-09-29 Created: 2023-09-29 Last updated: 2023-10-02Bibliographically approved
List of papers
1. Direct numerical simulation of molten pool convection in a 3D semicircular slice at different Prandtl numbers
Open this publication in new window or tab >>Direct numerical simulation of molten pool convection in a 3D semicircular slice at different Prandtl numbers
2022 (English)In: Nuclear Engineering and Design, ISSN 0029-5493, E-ISSN 1872-759X, Vol. 393, p. 111772-, article id 111772Article in journal (Refereed) Published
Abstract [en]

In this paper, a Direct Numerical Simulation (DNS) of an internally heated (IH) natural convection in a 3D semicircular slice molten pool is conducted using Nek5000, a CFD solver with spatial discretization based on the spectral element method. The mesh requirements in the bulk and boundary layers are both fulfilled using known correlations. A calculation of a simplified internally heated box is first established with an excellent agreement to existing data. Next, simulation of the 3D semi-circular is performed showing qualitative agreement with the general flow observations from the BALI experiments. The velocity field shows that the flow domain is divided into three regions, i.e., intensive turbulent eddies in the upper domain, weak flow motion in the lower domain, and the descending flow along the curved boundary. Correspondingly, the temperature field in the upper domain is relatively homogenous, while that in the lower domain is characterized by stratified layers. Further, the heat flux distribution along the boundaries shows that the heat fluxes fluctuate along the top wall due to turbulent eddies, and the heat fluxes at the curved wall increase nonlinearly from the bottom to the top. Finally, the influence of Prandtl number indicates that smaller Prandtl number will lead to more turbulence eddies, deeper descending flow, and more even redistribution of heat thereby lowering the maximum heat flux to the curved walls.

Place, publisher, year, edition, pages
Elsevier BV, 2022
Keywords
Direct numerical simulation, Mesh requirement, Internally heated natural convection, Prandtl number effect
National Category
Subatomic Physics Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-314194 (URN)10.1016/j.nucengdes.2022.111772 (DOI)000802961300001 ()2-s2.0-85129537152 (Scopus ID)
Note

QC 20220617

Available from: 2022-06-17 Created: 2022-06-17 Last updated: 2024-03-15Bibliographically approved
2. Scalability of Nek5000 on High-Performance Computing Clusters Toward Direct Numerical Simulation of Molten Pool Convection
Open this publication in new window or tab >>Scalability of Nek5000 on High-Performance Computing Clusters Toward Direct Numerical Simulation of Molten Pool Convection
2022 (English)In: Frontiers in Energy Research, E-ISSN 2296-598X, Vol. 10, article id 864821Article in journal (Refereed) Published
Abstract [en]

In a postulated severe accident, a molten pool with decay heat can form in the lower head of a reactor pressure vessel, threatening the vessel’s structural integrity. Natural convection in molten pools with extremely high Rayleigh (Ra) number is not yet fully understood as accurate simulation of the intense turbulence remains an outstanding challenge. Various models have been implemented in many studies, such as RANS (Reynolds-averaged Navier–Stokes), LES (large-eddy simulation), and DNS (direct numerical simulation). DNS can provide the most accurate results but at the expense of large computational resources. As the significant development of the HPC (high-performance computing) technology emerges, DNS becomes a more feasible method in molten pool simulations. Nek5000 is an open-source code for the simulation of incompressible flows, which is based on a high-order SEM (spectral element method) discretization strategy. Nek5000 has been performed on many supercomputing clusters, and the parallel performance of benchmarks can be useful for the estimation of computation budgets. In this work, we conducted scalability tests of Nek5000 on four different HPC clusters, namely, JUWELS (Atos Bullsquana X1000), Hawk (HPE Apollo 9000), ARCHER2 (HPE Cray EX), and Beskow (Cray XC40). The reference case is a DNS of molten pool convection in a hemispherical configuration with Ra = 1011, where the computational domain consisted of 391 million grid points. The objectives are (i) to determine if there is strong scalability of Nek5000 for the specific problem on the currently available systems and (ii) to explore the feasibility of obtaining DNS data for much higher Ra. We found super-linear speed-up up to 65536 MPI-rank on Hawk and ARCHER2 systems and around 8000 MPI-rank on JUWELS and Beskow systems. We achieved the best performance with the Hawk system with reasonably good results up to 131072 MPI-rank, which is attributed to the hypercube technique on its interconnection. Given the current HPC technology, it is feasible to obtain DNS data for Ra = 1012, but for cases higher than this, significant improvement in hardware and software HPC technology is necessary.

Place, publisher, year, edition, pages
Frontiers Media SA, 2022
Keywords
direct numerical simulation, high-performance computing, internally heated natural convection, Nek5000, scalability, Benchmarking, Budget control, Large eddy simulation, Natural convection, Numerical models, Open source software, Open systems, Pressure vessels, Direct numerical simulations datum, Direct-numerical-simulation, High-performance computing clusters, High-performance computing technology, Molten pool, Performance computing, Rayleigh
National Category
Energy Engineering Computer Sciences
Identifiers
urn:nbn:se:kth:diva-323796 (URN)10.3389/fenrg.2022.864821 (DOI)000810519000001 ()2-s2.0-85129720893 (Scopus ID)
Note

QC 20230213

Available from: 2023-02-13 Created: 2023-02-13 Last updated: 2023-09-29Bibliographically approved
3. Direct numerical simulation of internally heated natural convection in a hemispherical geometry
Open this publication in new window or tab >>Direct numerical simulation of internally heated natural convection in a hemispherical geometry
(English)Manuscript (preprint) (Other (popular science, discussion, etc.))
Abstract [en]

Internally heated (IH) natural convection can be found in nature, industrial processes, or during a severe accident in a light water reactor. In this accident scenario, the nuclear reactor core and some internal structures can melt down and relocate to the lower head of the reactor pressure vessel (RPV) and interact with the remaining coolant. Subsequent re-heating and re-melting under decay and oxidation heat creates a transition from a debris bed to a molten pool. The molten pool, which can involve more than hundred tons of dangerously superheated oxidic and metallic liquids, imposes thermo-mechanical loads on the vessel wall that can lead to a thermal and/or structural failure of the vessel and subsequent release of radioactive materials to the reactor pit, and can possibly make its way to the environment. This study uses Direct Numerical Simulation (DNS) to investigate homogeneous IH molten pool convection in a hemispherical domain using Nek5000, an open-source spectral element code. With a Rayleigh number of 1.6×1011, the highest reached through DNS in this confined hemispherical geometry, and a Prandtl number of 0.5, which corresponds to a prototypic corium, the study provides detailed information on the thermo-fluid behaviour. The results show a turbulent flow with three distinct regions, consistent with the general flow observations from the BALI experiments. The study also presents detailed information on turbulence, such as turbulent kinetic energy (TKE), turbulent heat flux (THF), and temperature variance. Additionally, the study provides 3D heat flux distributions along the boundaries. The heat fluxes along the top boundary fluctuate due to the turbulent eddies in the vicinity, while along the curved boundary the heat fluxes increase nonlinearly from the bottom to the top.

Keywords
internally heated natural convection, molten pool, DNS, turbulence
National Category
Fluid Mechanics
Identifiers
urn:nbn:se:kth:diva-337291 (URN)
Note

QC 20231002

Available from: 2023-09-29 Created: 2023-09-29 Last updated: 2025-02-09Bibliographically approved
4. Validation of DNS and RANS Approaches on Turbulent Natural Convection against the BALI-Metal Experiment
Open this publication in new window or tab >>Validation of DNS and RANS Approaches on Turbulent Natural Convection against the BALI-Metal Experiment
(English)Manuscript (preprint) (Other academic)
Abstract [en]

During severe accident scenarios in nuclear reactors, the core and internal structures can melt down and relocate to the lower head of the reactor pressure vessel (RPV), where they interact with any remaining coolant. This process can lead to the formation of a stratified molten pool, which is also called corium. It consists of dangerously superheated oxidic and metallic liquids, which imposes thermo-mechanical loads on the vessel wall. Typically, the molten pool separates into distinct layers, with a lighter layer of metallic materials on top and a denser layer of oxides at the bottom. The metal layer acts as a heat sink, absorbing heat from the heat-generating oxide layer and conducting it towards the inner wall of the RPV. This concentrated heat load to the vessel is known as the focusing effect.

This study conducts numerical simulations of the turbulent natural convection flow in a fluid layer undergoing both top and lateral cooling based on the BALI-Metal 8U experiment. Different methods were employed, including Direct Numerical Simulation (DNS) and three Reynolds-Averaged Navier-Stokes (RANS) models: k-ω SST, standard k-ε, and Reynolds stress equation model (RSM). The simulation results are compared with experimental data, and the RANS models are assessed using the DNS results. The results reveal that DNS is able to reproduce a two-distinct region flow structure similar to the experimental observations. The k-ω SST model shows similar flow patterns and turbulent kinetic energy (TKE) profile as the DNS results. Regarding the temperature field, all simulations overpredict temperature compared to the experimental data, with DNS providing the closest results. The turbulent heat flux (THF) result shows the RANS models are incapable of accurately modelling THF in turbulent natural convection flow. The heat flux analysis demonstrates that DNS achieved good agreement with experimental data in terms of heat flux distribution and energy balance, while the RANS models underestimate the focusing effect. Furthermore, DNS captures the transient maximum heat flux on the lateral cooling wall, which is higher than the time-averaged value, an important factor for estimating the focusing effect.

Keywords
Corium, Focusing effect, Natural convection, Direct Numerical Simulation (DNS), Reynolds-Averaged Navier-Stokes (RANS)
National Category
Fluid Mechanics
Identifiers
urn:nbn:se:kth:diva-337286 (URN)
Note

QC 20230929

Available from: 2023-09-29 Created: 2023-09-29 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

summary(3629 kB)181 downloads
File information
File name SUMMARY01.pdfFile size 3629 kBChecksum SHA-512
0d21512487384dbe7268e869f0dffe8ada38115a3105b7671a132bcdab2ad886768fd5576947b2e358ace77ebd56ebbdc056608b57f47bd58dd2ad6c099b4f17
Type summaryMimetype application/pdf

Authority records

Bian, Boshen

Search in DiVA

By author/editor
Bian, Boshen
By organisation
Nuclear Power Safety
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 767 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf