kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Physics-Informed Neural Networks and Machine Learning Algorithms for Sustainability Advancements in Power Systems Components
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).ORCID iD: 0000-0003-4132-3175
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

A power system consists of several critical components necessary for providing electricity from the producers to the consumers. Monitoring the lifetime of power system components becomes vital since they are subjected to electrical currents and high temperatures, which affect their ageing. Estimating the component's ageing rate close to the end of its lifetime is the motivation behind our project. Knowing the ageing rate and life expectancy, we can possibly better utilize and re-utilize existing power components and their parts. In return, we could achieve better material utilization, reduce costs, and improve sustainability designs, contributing to the circular industry development of power system components. Monitoring the thermal distribution and the degradation of the insulation materials informs the estimation of the components' health state. Moreover, further study of the employed paper material of their insulation system can lead to a deeper understanding of its thermal characterization and a possible consequent improvement.

Our study aims to create a model that couples the physical equations that govern the deterioration of the insulation systems of power components with modern machine learning algorithms. 

As the data is limited and complex in the field of components' ageing, Physics-Informed Neural Networks (PINNs) can help to overcome the problem. PINNs exploit the prior knowledge stored in partial differential equations (PDEs) or ordinary differential equations (ODEs) modelling the involved systems. This prior knowledge becomes a regularization agent, constraining the space of available solutions and consequently reducing the training data needed. 

This thesis is divided into two parts: the first focuses on the insulation system of power transformers, and the second is an exploration of the paper material concentrating on cellulose nanofibrils (CNFs) classification. The first part includes modelling the thermal distribution and the degradation of the cellulose inside the power transformer. The deterioration of one of the two systems can lead to severe consequences for the other. Both abilities of PINNs to approximate the solution of the equations and to find the parameters that best describe the data are explored. The second part could be conceived as a standalone; however, it leads to a further understanding of the paper material. Several CNFs materials and concentrations are presented, and this thesis proposes a basic unsupervised learning using clustering algorithms like k-means and Gaussian Mixture Models (GMMs) for their classification. 

Abstract [sv]

Ett kraftsystem består av många kritiska komponenter som är nödvändiga för att leverera el från producenter till konsumenter. Att övervaka livslängden på kraftsystemets komponenter är avgörande eftersom de utsätts för elektriska strömmar och höga temperaturer som påverkar deras åldrande. Att uppskatta komponentens åldringshastighet nära slutet av dess livslängd är motivationen bakom vårt projekt. Genom att känna till åldringshastigheten och den förväntade livslängden kan vi eventuellt utnyttja och återanvända befintliga kraftkomponenter och deras delar   bättre. I gengäld kan vi uppnå bättre materialutnyttjande, minska kostnaderna och förbättra hållbarhetsdesignen vilket bidrar till den cirkulära industriutvecklingen av kraftsystemskomponenter. Övervakning av värmefördelningen och nedbrytningen av isoleringsmaterialen indikerar komponenternas hälsotillstånd. Dessutom kan ytterligare studier av pappersmaterial i kraftkomponenternas isoleringssystem leda till en djupare förståelse av dess termiska karaktärisering och en möjlig förbättring. 

Vår studie syftar till att skapa en modell som kombinerar de fysiska ekvationer som styr försämringen av isoleringssystemen i kraftkomponenter med moderna algoritmer för maskininlärning.

Eftersom datan är begränsad och komplex när det gäller komponenters åldrande kan  fysikinformerade neurala nätverk (PINNs) hjälpa till att lösa problemet. PINNs utnyttjar den förkunskap som finns lagrad i partiella differentialekvationer (PDE) eller ordinära differentialekvationer (ODE) för att modellera system och använder dessa ekvationer för att begränsa antalet tillgängliga lösningar och därmed minska den mängd träningsdata som behövs. 

Denna avhandling är uppdelad i två delar: den första fokuserar på krafttransformatorers isoleringssystem, och den andra är en undersökning av pappersmaterialet som används med fokus på klassificering av cellulosananofibriller (CNF). Den första delen omfattar modellering av värmefördelningen och nedbrytningen av cellulosan inuti krafttransformatorn. En försämring av ett av de två systemen kan leda till allvarliga konsekvenser för det andra. Både PINNs förmåga att approximera lösningen av ekvationerna och att hitta de parametrar som bäst beskriver datan undersöks. Den andra delen skulle kunna ses som en fristående del, men den leder till en utökad förståelse av själva pappersmaterialet. Flera CNF-material och koncentrationer presenteras och denna avhandling föreslår en simpel oövervakad inlärning med klusteralgoritmer som k-means och Gaussian Mixture Models (GMMs) för deras klassificering.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. , p. 71
Series
TRITA-EECS-AVL ; 2023:69
Keywords [en]
Physics-Informed Neural Networks, Machine Learning, Data-Driven Methods, Circular Economy, Power Systems Components, Sustainability, Cellulose Nanofibrils
Keywords [sv]
Fysikinformerade Neurala Nätverk, Maskininlärning, Datadrivna Metoder, Cirkulär Ekonomi, Kraftsystemets Komponenter, Hållbarhet, Cellulosananofibriller
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-337846ISBN: 978-91-8040-723-6 (print)OAI: oai:DiVA.org:kth-337846DiVA, id: diva2:1803600
Presentation
2023-11-03, Room 3412, Sten Velander https://kth-se.zoom.us/j/62590383218, Teknikringen 33, KTH, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Vinnova, 2021-03748
Note

QC 20231010

Available from: 2023-10-10 Created: 2023-10-09 Last updated: 2023-10-23Bibliographically approved
List of papers
1. Physics-informed neural networks for modelling power transformer’s dynamic thermal behaviour
Open this publication in new window or tab >>Physics-informed neural networks for modelling power transformer’s dynamic thermal behaviour
Show others...
2022 (English)In: Electric power systems research, ISSN 0378-7796, E-ISSN 1873-2046, Vol. 211, p. 108447-108447, article id 108447Article in journal (Refereed) Published
Abstract [en]

This paper focuses on the thermal modelling of power transformers using physics-informed neural networks (PINNs). PINNs are neural networks trained to consider the physical laws provided by the general nonlinear partial differential equations (PDEs). The PDE considered for the study of power transformer’s thermal behaviour is the heat diffusion equation provided with boundary conditions given by the ambient temperature at the bottom and the top-oil temperature at the top. The model is one dimensional along the transformer height. The top-oil temperature and the transformer’s temperature distribution are estimated using field measurements of ambient temperature, top-oil temperature and the load factor. The measurements from a real transformer provide more realistic solution, but also an additional challenge. The Finite Volume Method (FVM) is used to calculate the solution of the equation and further to benchmark the predictions obtained by PINNs. The results obtained by PINNs for estimating the top-oil temperature and the transformer’s thermal distribution show high accuracy and almost exactly mimic FVM solution.

Place, publisher, year, edition, pages
Elsevier, 2022
Keywords
PINNs, Power transformers, Thermal modelling
National Category
Engineering and Technology Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-315639 (URN)10.1016/j.epsr.2022.108447 (DOI)000836904300022 ()2-s2.0-85134327084 (Scopus ID)
Funder
Vinnova, 2021-03748SweGRIDS - Swedish Centre for Smart Grids and Energy Storage, CPC19
Note

QC 20220912

Available from: 2022-07-14 Created: 2022-07-14 Last updated: 2025-05-02Bibliographically approved
2. Physics Informed Neural Networks for Power Transformer Dynamic Thermal Modelling
Open this publication in new window or tab >>Physics Informed Neural Networks for Power Transformer Dynamic Thermal Modelling
2022 (English)In: IFAC Papersonline, Elsevier BV , 2022, Vol. 55, no 20, p. 49-54Conference paper, Published paper (Refereed)
Abstract [en]

The emerging methodology of Physics Informed Neural Networks (PINNs) promises to combine available data and physical knowledge to achieve high accuracy and fast evaluation. Dynamic thermal modelling of power transformers is an application specifically set to benefit from these characteristics. Data collected during typical operation is not representative of extreme loading scenarios and the number of thermal sensors is limited. The detailed geometry is often not known by the asset owner which creates high uncertainty for physics-based simulation models. In this study, the transformer is modeled by the one-dimensional heat diffusion equation. PINN is constructed with a loss function including both data-based and physics-based terms. A time-dependent source term from a time series of measurement is also part of the PINN. The result is compared with a finite volume solution demonstrating good agreement. The PINN approach will be useful for further development in thermal modelling for power transformers. Copyright

Place, publisher, year, edition, pages
Elsevier BV, 2022
Keywords
Machine learning and artificial intelligence for modelling, Physics-Informed Neural Networks, Finite Volume Method, Comparison of methods, Environmental systems, Energy Systems
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-320496 (URN)10.1016/j.ifacol.2022.09.070 (DOI)000860842100009 ()2-s2.0-85142303301 (Scopus ID)
Conference
10th Vienna International Conference on Mathematical Modelling (MATHMOD), JUL 27-29, 2022, Tech Univ Wien, ELECTR NETWORK
Note

QC 20221026

Available from: 2022-10-26 Created: 2022-10-26 Last updated: 2023-10-09Bibliographically approved
3. Physics-Informed Neural Networks for prediction of transformer's temperature distribution
Open this publication in new window or tab >>Physics-Informed Neural Networks for prediction of transformer's temperature distribution
Show others...
2022 (English)In: 2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA / [ed] Wani, MA Kantardzic, M Palade, V Neagu, D Yang, L Chan, KY, Institute of Electrical and Electronics Engineers (IEEE) , 2022, p. 1579-1586Conference paper, Published paper (Refereed)
Abstract [en]

Physics-Informed Neural Networks (PINNs) are a novel approach to the integration of physical models into Neural Networks when solving supervised learning problems. PINNs have shown potential in mapping spatio-temporal input and the solution of a partial differential equation (PDE). However, despite their advantages for many applications, they often fail to train when target PDEs contain high frequencies or multiscale features. Thermal modelling of power transformers is fundamental for improving their efficiency and extending their lifetime. In this work, we investigate the performance of different PINN architectures applied to a 1D heat diffusion equation with a specific heat source representing the heat distribution inside a transformer. Measurements, which include the top-oil temperature, the ambient temperature and the load factor are taken from a transformer in service. We demonstrate the limitations of PINNs, propose possible remedies, and provide an overall assessment of the potential of using PINNs for transformer thermal modelling.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Keywords
PINN, thermal modelling, power transformer
National Category
Computer Sciences
Identifiers
urn:nbn:se:kth:diva-328419 (URN)10.1109/ICMLA55696.2022.00215 (DOI)000980994900236 ()2-s2.0-85152214174 (Scopus ID)
Conference
21st IEEE International Conference on Machine Learning and Applications (IEEE ICMLA), DEC 12-14, 2022, Nassau, BAHAMAS
Note

QC 20230613

Available from: 2023-06-13 Created: 2023-06-13 Last updated: 2025-05-02Bibliographically approved
4. Physics-Informed Neural Networks for Modeling Cellulose Degradation in Power Transformers
Open this publication in new window or tab >>Physics-Informed Neural Networks for Modeling Cellulose Degradation in Power Transformers
Show others...
2022 (English)In: 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE conference proceedings, 2022Conference paper, Published paper (Refereed)
Abstract [en]

Insulation is an essential part of power transformers, which guarantees an efficient and reliable operational life. It mainly consists of mineral oil and insulation paper. Most of the major failures of power transformers originate from internal insulation failures. Monitoring aging and thermal behaviour of the transformer’s insulation paper is achieved by different techniques, which consider the Degree of Polymerization (DP) to evaluate the cellulose degradation and other chemical factors accumulated in mineral oil. Given the physical and chemical nature of the problem of degradation, we couple it with machine learning models to predict the desired parameters for considered equations. In particular, the equation used applies the Arrhenius relation, which comprises parameters like the pre-exponential factor, which depends on the cellulose’s contamination content, and the activation energy, which is connected to the temperature dependence; both of the factors need to be estimated for our problem. For this reason, Physics-Informed Neural Networks (PINNs) are considered for solving the data-driven discovery of the DP equation.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2022
Keywords
physics-informed neural networks, material aging, material degradation, electric insulation
National Category
Computer Sciences
Identifiers
urn:nbn:se:kth:diva-325628 (URN)10.1109/ICMLA55696.2022.00216 (DOI)000980994900206 ()2-s2.0-85152213304 (Scopus ID)
Conference
21st IEEE International Conference on Machine Learning and Applications (ICMLA) 2022, December 12-14 2022, Nassau, Atlantis Hotel, Bahamas
Note

QC 20230411

Available from: 2023-04-07 Created: 2023-04-07 Last updated: 2023-10-09Bibliographically approved
5. Unsupervised Learning Analysis of Flow-Induced Birefringence in Nanocellulose: Differentiating Materials and Concentrations
Open this publication in new window or tab >>Unsupervised Learning Analysis of Flow-Induced Birefringence in Nanocellulose: Differentiating Materials and Concentrations
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Cellulose nanofibrils (CNFs) can be used as building blocks for future sustainable materials including strong and stiff filaments. The goal of this paper is to introduce a data analysis of flow-induced birefringence experiments by means of unsupervised learning techniques. By reducing the dimensionality of the data with Principal Component Analysis (PCA) we are able to exploit information for the different cellulose materials at several concentrations and compare them to each other. Our approach aims at classifying the CNF materials at different concentrations by applying unsupervised machine learning algorithms, like k-means and Gaussian Mixture Models (GMMs). Finally, we analyze the autocorrelation function (ACF) and the partial autocorrelation function (PACF) of the first principal component, detecting seasonality in lower concentrations. The focus is given to the initial relaxation of birefringence after the flow is stopped to have a better understanding of the Brownian dynamics for the given materials and concentrations.

Our method can be used to distinguish the different materials at specific concentrations and could help to identify possible advantages and drawbacks of one material over the other. 

Keywords
Unsupervised Learning, Cellulose Nanofibrils, k-means, Gaussian Mixture Models, Principal Component Analysis
National Category
Computer Sciences
Identifiers
urn:nbn:se:kth:diva-337102 (URN)
Note

QCR 20230926

Available from: 2023-09-25 Created: 2023-09-25 Last updated: 2023-10-09Bibliographically approved

Open Access in DiVA

Summary(4615 kB)609 downloads
File information
File name FULLTEXT01.pdfFile size 4615 kBChecksum SHA-512
4f4ae9a224285a5ccaecac8505ee5ddc48cd3458366d6cfe3b92d7eebe006b511e697ac881e58cc175a6b9c4e3cdc40c1ae259827e2d2d11b93be49f4efbf16c
Type fulltextMimetype application/pdf

Authority records

Bragone, Federica

Search in DiVA

By author/editor
Bragone, Federica
By organisation
Computational Science and Technology (CST)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 609 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1629 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf