kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A GPU-Accelerated Molecular Docking Workflow with Kubernetes and Apache Airflow
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).ORCID iD: 0009-0003-6504-7109
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).ORCID iD: 0000-0003-1669-7714
KTH.
2023 (English)In: High Performance Computing: ISC High Performance 2023 International Workshops, Revised Selected Papers, Springer Nature , 2023, p. 193-206Conference paper, Published paper (Refereed)
Abstract [en]

Complex workflows play a critical role in accelerating scientific discovery. In many scientific domains, efficient workflow management can lead to faster scientific output and broader user groups. Workflows that can leverage resources across the boundary between cloud and HPC are a strong driver for the convergence of HPC and cloud. This study investigates the transition and deployment of a GPU-accelerated molecular docking workflow that was designed for HPC systems onto a cloud-native environment with Kubernetes and Apache Airflow. The case study focuses on state-of-of-the-art molecular docking software for drug discovery. We provide a DAG-based implementation in Apache Airflow and technical details for GPU-accelerated deployment. We evaluated the workflow using the SWEETLEAD bioinformatics dataset and executed it in a Cloud environment with heterogeneous computing resources. Our workflow can effectively overlap different stages when mapped onto different computing resources.

Place, publisher, year, edition, pages
Springer Nature , 2023. p. 193-206
Keywords [en]
Apache Airflow, Converged Computing, Drug Discovery, HPC and Cloud, HPC workflow, Kubernetes
National Category
Computer Sciences Computer Systems
Identifiers
URN: urn:nbn:se:kth:diva-337889DOI: 10.1007/978-3-031-40843-4_15Scopus ID: 2-s2.0-85171329143OAI: oai:DiVA.org:kth-337889DiVA, id: diva2:1803830
Conference
38th International Conference on High Performance Computing, ISC High Performance 2023, Hamburg, Germany, May 21 2023 - May 25 2023
Note

Part of ISBN 9783031408427

QC 20231010

Available from: 2023-10-10 Created: 2023-10-10 Last updated: 2025-05-06Bibliographically approved
In thesis
1. Emerging Paradigms in the Convergence of Cloud and High-Performance Computing
Open this publication in new window or tab >>Emerging Paradigms in the Convergence of Cloud and High-Performance Computing
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Traditional HPC scientific workloads are tightly coupled, while emerging scientific workflows exhibit even more complex patterns, consisting of multiple characteristically different stages that may be IO-intensive, compute-intensive, or memory-intensive. New high-performance computer systems are evolving to adapt to these new requirements and are motivated by the need for performance and efficiency in resource usage. On the other hand, cloud workloads are loosely coupled, and their systems have matured technologies under different constraints from HPC.

In this thesis, the use of cloud technologies designed for loosely coupled dynamic and elastic workloads is explored, repurposed, and examined in the landscape of HPC in three major parts. The first part deals with the deployment of HPC workloads in cloud-native environments through the use of containers and analyses the feasibility and trade-offs of elastic scaling. The second part relates to the use of workflow management systems in HPC workflows; in particular, a molecular docking workflow executed through Airflow is discussed. Finally, object storage systems, a cost-effective and scalable solution widely used in the cloud, and their usage in HPC applications through MPI I/O are discussed in the third part of this thesis. 

Abstract [sv]

Framväxande vetenskapliga applikationer är mycket datatunga och starkt kopplade. Nya högpresterande datorsystem anpassar sig till dessa nya krav och motiveras av behovet av prestanda och effektivitet i resursanvändningen. Å andra sidan är moln-applikationer löst kopplade och deras system har mogna teknologier som utvecklats under andra begränsningar än HPC.

I den här avhandlingen diskuteras användningen av moln-teknologier som har mognat under löst kopplade applikationer i HPC-landskapet i tre huvuddelar. Den första delen handlar om implementeringen av HPC-applikationer i molnmiljöer genom användning av containrar och analyserar genomförbarheten och avvägningarna av elastisk skalning. Den andra delen handlar om användningen av arbetsflödeshanteringsystem i HPC-arbetsflöden; särskilt diskuteras ett molekylär dockningsarbetsflöde som utförs genom Airflow. Objektlagringssystem och deras användning inom HPC, tillsammans med ett gränssnitt mellan S3-standard och MPI I/O, diskuteras i den tredje delen av denna avhandling

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. p. v, 53
Series
TRITA-EECS-AVL ; 2023:80
Keywords
High-performance computing, Kubernetes, airflow, elastic scaling, MPI, S3
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-339918 (URN)978-91-8040-753-3 (ISBN)
Presentation
2023-12-15, Visualization Studio, Lindstedtsvägen 9, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20231122

Available from: 2023-11-22 Created: 2023-11-21 Last updated: 2023-11-22Bibliographically approved
2. Towards Adaptive Resource Management for HPC Workloads in Cloud Environments
Open this publication in new window or tab >>Towards Adaptive Resource Management for HPC Workloads in Cloud Environments
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Maximizing resource efficiency is crucial when designing cloud-based systems,which are primarily built to meet specific quality-of-service requirements.Common optimization techniques include containerization, workflow orchestration,elasticity, and vertical scaling, all aimed at improving resource utilizationand reducing costs. In contrast, on-premises high-performance computingsystems prioritize maximum performance, typically relying on static resourceallocation. While this approach offers certain advantages over cloud systems,it can be restrictive in handling the increasingly dynamic resource demands oftightly coupled HPC workloads, making adaptive resource management challenging.

This thesis explores the execution of high-performance workloads in cloudbasedenvironments, investigating both horizontal and vertical scaling strategiesas well as the feasibility of running HPC workflows in the cloud. Additionally,we will evaluate the costs of deploying these workloads in containerizedenvironments and examine the advantages of using object storagein cloud-based HPC systems.

Abstract [sv]

Att maximera resurseffektiviteten ar avgörande vid utformningen av molnbaserade system, som framst byggs för att uppfylla specifika krav på tjänstekvalitet. Vanliga optimeringstekniker inkluderar containerisering, arbetsflödesorkestrering, elasticitet och vertikal skalning, med målet att förbättra resursutnyttjandet och minska kostnaderna. I kontrast fokuserar lokala högprestandaberäkningssystem (HPC) på maximal prestanda och förlitar sig oftast på statisk resursallokering. Även om denna strategi har vissa fördelar jämfört med molnlösningar, kan den vara begränsande när det gäller att hantera de allt mer dynamiska resursbehoven hos tätt sammankopplade HPC-arbetslaster, vilket gör adaptiv resursförvaltning utmanande. Denna avhandling undersöker körningen av högprestandaarbetslaster i molnbaserade miljöer, med fokus på både horisontell och vertikal skalning samt möjligheten att köra HPC-arbetsflöden i molnet. Dessutom kommer vi att analysera kostnaderna for att distribuera dessa arbetslaster i containeriserade miljöer och utvärdera fördelarna med att använda objektlagring i molnbaserade HPC-system.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. p. 91
Series
TRITA-EECS-AVL ; 2025:51
Keywords
high-performance computing, resource adaptability, cloud computing, containers, horizontal scaling, vertical scaling, object storage, Högprestandaberäkning, resursanpassningsförmåga, molnberäkning, containerisering, horisontell skalning, vertikal skalning, objektlagring
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-363164 (URN)978-91-8106-279-3 (ISBN)
Public defence
2025-06-02, E2, Lindstedtsvägen 3, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20250506

Available from: 2025-05-06 Created: 2025-05-06 Last updated: 2025-05-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Araújo De Medeiros, DanielSchieffer, GabinWahlgren, Jacob

Search in DiVA

By author/editor
Araújo De Medeiros, DanielSchieffer, GabinWahlgren, JacobPeng, Ivy
By organisation
Computational Science and Technology (CST)KTH
Computer SciencesComputer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 259 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf