Anomaly Detection in Snus Manufacturing: A machine learning approach for quality assurance
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE credits
Student thesisAlternative title
Avvikelseidentifiering inom snustillverkning : En maskininlärningsttillämpning för kvalitetskontroll (Swedish)
Abstract [en]
The art of anomaly detection is a relevant topic for most producing companies since it allows for real-time quality assurance in production. However, previous research is lacking on the applicability of anomaly detection methods on non-synthetic image datasets. Using a dataset provided by Swedish Match consisting of 943 images of snus cans without lids, we offer an extension to a recent anomaly detection benchmark study by assessing how 29 anomaly detection algorithms perform on our non-synthetic dataset. The results showed that fully supervised methods performed the best, and that labelled data significantly improved model performance. Although the achieved results were not satisfactory in terms of AUCROC and AUCPR, there were clear indications that performance can be improved by increasing the amount of training data. The best-performing model was Logistic Regression.
Abstract [sv]
Avvikelsedetektering är ett relevant ämne för de flesta aktörerna inom tillverkningsindustrin eftersom det möjliggör kvalitetssäkring i realtid i produktionskedjor. I tidigare forskning har det saknats studier gjorda med verklighetstrogna, icke-syntetiska dataset. Med hjälp av ett dataset tillhandahållet av Swedish Match bestående av 943 bilder på öppna snusdosor tillför vi en vetenskaplig påbyggnad till en nyligen publicerad jämförelsestudie inom avvikelsedetektering. Detta genom att träna och utvärdera 29 avvikelsedetekteringsmodeller på vårt icke-syntetiska dataset. Resultaten visade att fully supervised-modellerna presterade bäst, och att klassificerad träningsdata ökar prestandan. Trots att modellerna generellt uppnådde låg AUCPR och AUCROC finns det tydliga indikationer på att detta är uppnåbart genom att utöka träningsdatamängden. Den bäst presterande modellen var Logistic Regression.
Place, publisher, year, edition, pages
2023. , p. 46
Series
TRITA-EECS-EX ; 2023:636
Keywords [en]
Anomaly Detection, Machine Learning
Keywords [sv]
Anomaly Detection, Machine Learning
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-337935OAI: oai:DiVA.org:kth-337935DiVA, id: diva2:1803957
External cooperation
Swedish Match AB
Supervisors
Examiners
2024-02-012023-10-112024-04-17Bibliographically approved