kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Real-time adaptation of robotic knees using reinforcement control
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Microprocessor-controlled knees (MPK’s) allow amputees to walk with increasing ease and safety as technology progresses. As an amputee is fitted with a new MPK, the knee’s internal parameters are tuned to the user’s preferred settings in a controlled environment. These parameters determine various gait control settings, such as flexion target angle or swing extension resistance. Though these parameters may work well during the initial fitting, the MPK experiences various internal & external environmental changes throughout its life-cycle, such as product wear, changes in the amputee’s muscle strength, temperature changes, etc. This work investigates the feasibility of using a reinforcement learning (RL) control to adapt the MPK’s swing resistance to consistently induce the amputee’s preferred swing performance in realtime. Three gait features were identified as swing performance indicators for the RL algorithm. Results show that the RL control is able to learn and improve its tuning performance in terms of Mean Absolute Error over two 40-45 minute training sessions with a human-in-the-loop. Additionally, results show promise in using transfer learning to reduce strenuous RL training times.

Abstract [sv]

Mikroprocessorkontrollerade knän (MPK) gör att amputerade kan utföra fysiska aktiviteter med ökad lätthet och säkerhet allt eftersom tekniken fortskrider. När en ny MPK monteras på en amputerad person, anpassas knäts interna parametrar till användarens i ett kontrollerad miljö. Dessa parametrar styr olika gångkontrollinställningar, såsom flexionsmålvinkel eller svängförlängningsmotstånd. Även om parametrarna kan fungera bra under den initiala anpassningen, upplever den MPK olika interna och yttre miljöförändringar under sin hela livscykel, till exempel produktslitage, förändringar i den amputerades muskelstyrka, temperaturförändringar, etc. Detta arbete undersöker möjligheten av, med hjälp av en förstärkningsinlärningskontroll (RL), att anpassa MPK svängmotstånd för att konsekvent inducera den amputerades föredragna svängprestanda i realtid. Tre gångegenskaper identifierades som svingprestandaindikatorer för RL-algoritmen. Resultaten visar att RL-kontrollen kan lära sig och förbättra sin inställningsprestanda i termer av Mean Absolute Error under två 40-45 minuters träningspass med en människa-i-loopen. Dessutom är resultaten lovande när det gäller att använda överföringsinlärning för att minska ansträngande RL-träningstider.

Place, publisher, year, edition, pages
2023. , p. 43
Series
TRITA-EECS-EX ; 2023:659
Keywords [en]
Machine learning, deep reinforcement learning, transfer learning, medical device, prosthetic, prosthesis, controls, human-in-the-loop
Keywords [sv]
Maskininlärning, djup förstärkningsinlärning, överföringsinlärning, medicinsk utrustning, protes, kontroller, människa-i-loopen
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-338025OAI: oai:DiVA.org:kth-338025DiVA, id: diva2:1804554
External cooperation
Össur
Educational program
Master of Science - Machine Learning
Supervisors
Examiners
Available from: 2023-10-16 Created: 2023-10-13 Last updated: 2023-10-16Bibliographically approved

Open Access in DiVA

fulltext(2410 kB)217 downloads
File information
File name FULLTEXT01.pdfFile size 2410 kBChecksum SHA-512
6f7ef83d1401d5fe541b2677c19543b6cef17dc8f651ff2afabe7416d67f14e9777eff70e88bb3784e725e8da528186d7ab091cbfdb7126bc335bb6d3e92c7a8
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 219 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 423 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf