kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hierarchical Clustering using Brain-like Recurrent Attractor Neural Networks
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Hierarkisk klustring med hjälp av Hjärnliknande återkommande attraktor Neurala nätverk (Swedish)
Abstract [en]

Hierarchical clustering is a family of machine learning methods that has many applications, amongst other data science and data mining. This thesis belongs to the research area of brain-like computing and introduces a novel approach to hierarchical clustering using a brain-like recurrent neural network. Attractor networks can cluster samples by converging to the same network state. We modulate the network behaviour by varying a parameter in the activity propagation rule such that the granularity of the resulting clustering is changed. A hierarchical clustering is then created by combining multiple levels of granularity. The method is developed for two different datasets and evaluated on a variety of clustering metrics. Its performance is compared to standard clustering algorithms and the structure and composition of the clustering is inspected. We show that the method can produce clusterings for different levels of granularity and new data without retraining. As a novel clustering method, it is relevant to machine learning applications. As a model for hierarchical recall in a memory model, it is relevant to computational neuroscience and neuromorphic computing.

Abstract [sv]

Hierarkiskt klusterarbete är en grupp av maskininlärningsmetoder som har många tillämpningar, bland annat datavetenskap och datagrävning. Denna avhandling tillhör forskningsområdet för hjärnlikt databehandling och introducerar ett nytt tillvägagångssätt för hierarkiskt klusterarbete med hjälp av ett hjärnlikt återkommande neuronnätverk. Attraktornätverk kan klustra prover genom att konvergera till samma nätverksstadium. Vi modulerar nätverkets beteende genom att variera en parameter i regeln för aktivitetspropagering så att granulariteten i det resulterande klusterarbetet förändras. Ett hierarkiskt klusterarbete skapas sedan genom att kombinera flera nivåer av granularitet. Metoden utvecklas för två olika datasets och utvärderas med hjälp av olika klustringsmått. Dess prestanda jämförs med standard klusteringsalgoritmer och strukturen och sammansättningen av klusterarbetet inspekteras. Vi visar att metoden kan producera klusterarbeten för olika nivåer av granularitet och nya data utan omträning. Som en ny klusteringsmetod är den relevant för maskininlärningsapplikationer. Som en modell för hierarkisk återkallelse i en minnesmodell är den relevant för beräkningsneurovetenskap och neuromorfisk databehandling.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology , 2023. , p. 64
Series
TRITA-EECS-EX ; 2023:719
Keywords [en]
Hierarchical Clustering, Attractor Network, Recurrent Neural Network, Brain-like computing
Keywords [sv]
Hierarkisk klustring, Anlockningsnätverk, Återkommande neurala nätverk, Hjärnliknande databehandling
National Category
Computer Sciences Computer Engineering
Identifiers
URN: urn:nbn:se:kth:diva-338209OAI: oai:DiVA.org:kth-338209DiVA, id: diva2:1805224
Supervisors
Examiners
Available from: 2023-11-09 Created: 2023-10-16 Last updated: 2023-11-09Bibliographically approved

Open Access in DiVA

fulltext(6062 kB)379 downloads
File information
File name FULLTEXT01.pdfFile size 6062 kBChecksum SHA-512
7e1886ab25371ba6877f58b3e5a5a988adcafa859600d74568817637d0e9f5da000e8ddc5bf986517ad33a9a78f40e07b4551adf9b81bb277f6db2959523aadd
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer SciencesComputer Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 379 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 322 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf