kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Gas phase composition of a NiMH battery during a work cycle
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0003-2344-327x
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0003-4770-9554
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry. Nilar AB.ORCID iD: 0000-0002-2499-8931
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

NiMH batteries are popular in the electromotive industry due to good rate capability, reliability, and environmental friendliness. Although the battery type is thoroughly investigated, studies of battery gas composition formed during a work cycle are few. The gas composition would be useful to understand the reactions occurring in the battery during cycling and could be used to optimize battery operation. 

In this study, two methods for investigating the internal NiMH battery gas phase composition during different charge/discharge cycles using mass spectrometer (MS) were developed. In the first method, the battery module was connected by a sampler system. In the second method, the battery was connected directly using a microcapillary, and the gas composition was continuously measured. In addition to the gas composition the voltage, pressure, and temperature of the battery were recorded. 

The biggest contributor in the measured gas phase was N2, followed by H2. A clear rising trend of H2 pressure as SOC increased was recorded, while O2 levels were low except around end of charge. Thus, the methods were found to be a reliable way of investigating NiMH gas composition without negatively affecting the battery.

Keywords [en]
NiMH batteries, gas phase composition, mass spectrometry
National Category
Other Chemical Engineering
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-338252OAI: oai:DiVA.org:kth-338252DiVA, id: diva2:1805847
Funder
Swedish Foundation for Strategic Research, ID16-0111Swedish Energy Agency, 42791-1
Note

QC 20231030

Available from: 2023-10-18 Created: 2023-10-18 Last updated: 2024-08-23Bibliographically approved
In thesis
1. The dynamic behavior of the NiMH battery – Creating a versatile NiMH battery model
Open this publication in new window or tab >>The dynamic behavior of the NiMH battery – Creating a versatile NiMH battery model
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

To facilitate the shift from fossil to renewable energy sources, energy storage is needed to cope with the intermittent nature of technologies such as solar, wind, and wave power. One storage alternative is battery-based stationary energy storage. There are many battery types to choose from, but Nickel Metal Hydride (NiMH) is a type that is especially well suited. These batteries have a high energy density, a large temperature operating window and are a safe alternative for large scale energy storage.

In this thesis, the behavior of the NiMH battery is studied with the aim to develop a dynamic battery model, a model that is capable of reproducing the battery voltage and pressure, also for dynamic usage. Such a model can be used to facilitate development of NiMH batteries, improvement of the algorithms used in the Battery Management System (BMS), quality control, and dimensioning of energy storage systems. These improvements can lead to stationary energy storage with a higher efficiency and longer usable lifetime.

To increase the understanding of the battery function, deeper study was carried out of two behaviors that are typical for the NiMH battery and are deemed to have a large impact on the battery: Open circuit voltage (OCV) hysteresis and the battery gas phase behavior. The OCV hysteresis complicates modelling because it causes the battery rest voltage at a certain degree of charge to depend on the charge/discharge path taken to get there. OCV hysteresis is not noticeable for all batteries, and it is especially prominent for the NiMH battery. The gas phase in the NiMH battery is active since the electrolyte is water based and the voltage window during operation causes oxygen evolution at the positive electrode. The oxygen is then recombined into water at the negative electrode. The amount of hydrogen in the gas phase varies over a cycle due to the the dependence on temperature and state of charge of the hydrogen equilibrium pressure over the negative metal hydride electrode.

Two models were developed separately to study these behaviors. The models showed good qualitative reproduction capabilities. The hysteresis phenomenon was also studied using structural analysis methods. Differences were identified in the material structure between two samples of the positive electrode material at the same state of charge but different hysteresis states. These differences were found in both the bulk and the surface region of the particles. The differences in bulk were related to degree of disorder and the differences in the surface region to inhomogeneity in Li distribution in the cobalt oxyhydroxide layer. The gas composition was studied using mass spectrometry. The gas phase was mostly composed of nitrogen, but hydrogen was responsible for the majority of the pressure changes of the battery during a charge/discharge cycle. Oxygen could be detected at the end of charge, where it is produced due to high voltage on the positive electrode.

Finally, the two models were added to a P2D-model. This model type is commonly used to simulate battery behavior, and is based on electrochemical theory with approximations used for the porous electrode behavior. The spacial distribution is modeled in one dimension with an additional dimension added locally to simulate intra particle diffusion. The combined model showed that the behavior seen from a NiMH during dynamic usage could be recreated qualitatively through adding OCV hysteresis and the gas phase behavior to this standard model type.

Abstract [sv]

För att underlätta skiftet från fossilbaserade till förnyelsebara energikällor behövs energilagring för att hantera den intermittenta produktionen hos tekniker som sol- vind och vågkraft. Ett alternativ är stationär energilagring med hjälp av batterier. Det finns många batterityper att välja på, men Nickel Metallhydrid batterier (NiMH) är särskilt lämpade. De har bra energidensitet, stort temperaturfönster och är ett säkert alternativ för storskalig energilagring.

I den här avhandlingen studeras NiMH batteriets beteende med målet att ta fram en dynamisk batterimodell, en modell som är kapabel att reproducera batteriets spänning och tryckbeteende även för dynamiska körcykler. En sådan modell kan avvändas till att underlätta utveckling av NiMH batterier, förbättra algoritmerna i batteriernas styrsystem, kvalitetskontroll och dimensionering av system. I förlängningen innebär det stationära energilager med högre verkningsgrad och längre livslängd.

För att öka förståelsen för hur batteriet fungerar så har fördjupning gjorts i två beteenden som är typiska för NiMH batteriet och ansågs ha särskilt stor inverkan: Öppetkretsspänningshysteresen och beteendet hos batteriets gasfas. Öppetkretsspänningshysteresen försvårar modellering genom att batteriets vilospänning vid en viss laddningsgrad beror på hur det laddats och laddats ur för att komma dit. Öppetkretsspänningshysteres är inte någonting som är märkbart hos alla batterityper, men den är särskilt kraftig hos NiMH. Gasfasen hos batteriet är aktiv eftersom elektrolyten är vattenbaserad och dess spänningsfönster vid drift orsakar syrgasutveckling på den positiva elektroden. Syrgasen återbildas sedan till vatten på den negativa elektroden. Mängden vätgas i gasfasen förändras pågrund  av hur jämviktstrycket av vätgas över den negativa vätelagringselektroden beror av laddningsgrad och temperatur.

I arbetet så utvecklades två modeller separat för att beskriva dessa två beteenden. Modellerna visade upp en god kvalitativ överenstämmelse. Hystersfenomenet studerades med hjälp av strukturkemiska metoder, och skillnader identifierades i materialstrukturen mellan positivt elektrodmaterial vid samma laddningsrad men olika hysterestillstånd. Dessa skillnader återfanns både i bulken och ytregionen i de aktiva partiklarna. Skillnaderna i bulken härrörde från graden av oordning, och skillnaderna i ytregionen i ojämnhet i Li distributionen i koboltoxyhydroxidlagret. Gassammansättningen studerades med hjälp av masspektrometri. Gasfasen utgjordes till största delen av kväve, men vätgas var ansvarig för majoriteten av tryckförändringen hos batteriet under en laddcykel. Syrgas kunde mätas vid slutet av laddning, där det produceras till följd av höga spänningar på den positiva elektroden.

Slutligen så adderades de två utvecklade modellerna till en så kallad P2D modell. Denna modelltyp är vanlig för att simulera batterier och bygger på elektrokemisk teori med uttryck för att approximera beteendet hos de porösa elektroderna. Modellen är byggd i en rumsdimension, med en ytterligare dimmension för att simulera diffusionen i de aktiva partiklarna som räknas ut lokalt. Den sammanslagna modellen visade att de beteenden som ses hos ett NiMH batteri vid blandad drift kunde återskapas kvalitativt genom att ta öppetkretsspänningshysteresen och gasfasbeteendena i beaktan.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2023. p. 75
Series
TRITA-CBH-FOU ; 2023:51
Keywords
NiMH batteries, Battery Modeling, OCV hysteresis, NiMH gas phase, P2D model, NiMH batterier, Batterimodellering, OCV hysteres, NiMH gasfas, P2D modell
National Category
Other Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-338147 (URN)978-91-8040-742-7 (ISBN)
Public defence
2023-11-22, Kollegiesalen https://kth-se.zoom.us/meeting/register/u5AqcuGgpzwpHNGjZ3gdaRMKu3gq6T0J0aQc, Brinellvägen 8, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, ID16-0111
Note

QC 20231027

Available from: 2023-10-27 Created: 2023-10-26 Last updated: 2023-10-31Bibliographically approved
2. Selectivity and gas composition in electrochemical systems by mass spectrometry
Open this publication in new window or tab >>Selectivity and gas composition in electrochemical systems by mass spectrometry
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This doctoral thesis presents experimental studies of gaseous products of two electrochemical systems: the chlorate process and the nickel-metal hydride (NiMH) battery, employing mass spectrometry.

The cathodic efficiency for the hydrogen evolution reaction (HER) of the chlorate process was investigated by employing ex-situ synthesized MnOx electrodes. Without the addition of toxic chromium (VI), used today in industry, high cathodic efficiency was achieved. The effect of different annealing temperatures in the electrode preparation on HER efficiency was examined. The addition of 1000 times lower concentrations of chromium (VI) than used in the industry today, together with in-situ added molybdate,showed promising results in keeping high cathodic efficiency and selectivity towards HER. The evolution of oxygen decreases anodic efficiency and also presents a safety risk due to simultaneously proceeding of HER in the undivided cell. The amount of produced oxygen by two types of electrodes TiRu and TiRuSnSb, was followed. Oxygen is produced by homogenous hypochlorite decomposition, heterogeneously by different electrode surface present in the electrolyte solution and anodically during the electrolysis i.e. electrochemically.

Investigating gas composition in batteries presents a challenge due to the complexity of reactions leading to the gas evolution.Additionally, the gas consumption has a significant impact on the amount and constituents of the collected gases. The methodology for investigating gas composition of the NiMH battery without influencing the battery performance was established. Two technologies, sampler and microcapillary, gave reasonable and complementing results.

Abstract [sv]

Denna doktorsavhandling presenterar experimentella studier av gasformiga produkter från två olika elektrokemiska system: kloratprocessen och Nickel Metallhydrid batteriet (NiMH), med användning av masspektrometri.

Den katodiska effektiviteten för vätgasutvecklingsreaktionen (HER) i kloratprocessen undersöktes genom att använda ex-situ syntetiserade MnOx-elektroder. Utan tillsats av giftig krom (VI), som används idag inom industrin, uppnåddes hög katodisk effektivitet. Effekten av olika ugnstemperaturer vid syntesen av elektrodbeläggningen på HER-effektiviteten undersöktes. Tillsatsen av krom (VI) i koncentrationer som är 1000 gånger lägre än de som används inom industrin idag, tillsammans med in-situ tillsattsmolybdat, visade lovande resultat för att bibehålla hög katodisk effektivitet och selektivitet gentemot HER. Bildningen av syrgas minskar den anodiska effektiviteten samt utgör en säkerhetsrisk på grund av samtidig förekomst av HER i den odelade cellen. Mängden producerat syre från två typer av elektroder, TiRu och TiRuSnSb,följdes. Syrgas produceras genom homogen hypokloritnedbrytning,heterogent på olika katalytiska ytor i kontakt med elektrolytlösningen och anodiskt under elektrolys, det vill säga elektrokemiskt.

Att undersöka gas-sammansättningen i batterier är en utmaning på grund av komplexiteten hos de reaktioner som leder till gas-utvecklingen.Dessutom har gasförbrukningen en betydande inverkan på mängden och sammansättningen av de insamlade gaserna. En metod för att undersöka gas-sammansättningen hos NiMH-batteriet, utan att påverka batteriprestanda, utvecklades. Två teknologier, provtagare och mikrokapillär, gav rimliga och kompletterande resultat.

Abstract [sr]

У оквиру ове докторске тезе представљене су експерименталне студије гасовитих продуката два електрохемијска система: електролизе хлората и никл метал хидридне (NiMH) батерије,користећи масену спектрометрију.

Висока ефикасност катодне реакције, издвајања водоника, у електролизи хлората се данас постиже додавањем токсичног хрома (VI) процесу. Овде је испитана катодна ефикасност за реакцију издвајања водоника у електролизи хлората користећи екс-ситу синтетисане MnOx електроде и без додатка токсичног хрома (VI), који се данас користи у индустрији,постигнута је висока ефикасност. Испитан је ефекат различитих температура жарења у току припреме електрода на ефикасност реакције издвајања водоника. Такође је испитана могућност додатка 1000 пута мање концентрације хрома у поређењу с данашњим стандардом у индустрији, заједно с ин-ситу додатком молибдата и забележени су обећавајући резултати у одржавању високе ефикасности и селективности на реакцију издвајања водоника. Eволуција кисеоника снижава анодну ефикасност процеса и представља безбедоносни ризик услед истовремене еволуције водоника у електролитичкој ћелији. У овој тези је такође истражена и количина произведеног кисеоника користећи два типа електрода TiRu и TiRuSnSb. Први састав одговара стандардном саставу димензионо стабилних анода (ДСА), а други састав је њихова допингована варјанта. Закључено је да се кисениок производи хомогенo -разлагањем хипохлорита, хетерогено - помоћу различитих електродних површина присутних у електролиту и анодно - током електролизе, односно електрохемијски.

Услед сложености реакција које доводе до еволуције гасова,истражити састав гаса у батеријама представља изазов. Такође, потрошња гаса утиче на количину и састав узоркованих гасова. Развијена је методологија за испитивање састава гаса NiMH батерије,без утицаја на перформансе батерије. Две различите технологије,узоркивач и микрокапилара су дале разумне и комплементарнерезултате.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 69
Series
TRITA-CBH-FOU ; 2024:11
Keywords
electrolysis, chlorate, selectivity, chromate, DSA, HER, OER, hypochlorite, ClER, catalysis, gases, NiMH battery, електролиза, хлорат, селективност, хромат, ДСА, реакција издвајања водоника, еволуција кисеоника, хипохлорат, еволуција хлора, катализа, гасови, NiMH батерије, elektrolys, klorat, selektivitet, kromat, DSA, vätgasutvecklingsreaktion, syrgasutvecklingsreaktion, hypoklorit, klorgasutvecklingsreaktion, katalys, gaser, NiMH batteri
National Category
Other Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-345628 (URN)978-91-8040-893-6 (ISBN)
Public defence
2024-05-24, E3, Osquars backe 2, floor 2. Via Zoom: https://kth-se.zoom.us/webinar/register/WN_TYnpeqQpQFCcA2UYIo-LyA, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20240418

Available from: 2024-04-18 Created: 2024-04-17 Last updated: 2024-04-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Lindberg, AleksandraEriksson, BjörnBörjesson Axén, JennyPushkaran Sandra, AmrithaLindbergh, Göran

Search in DiVA

By author/editor
Lindberg, AleksandraEriksson, BjörnBörjesson Axén, JennyPushkaran Sandra, AmrithaLindbergh, Göran
By organisation
Applied Electrochemistry
Other Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 89 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf