kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Smart pavement maintenance and infrastructure operation through digital twins: Case study for Norvik Port, Sweden
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There is an urgent need to make the way in which people and goods move more sustainable. Though pavements are one of the key components of road transportation networks and logistics systems, they are usually overlooked in systemic sustainability analyses. This means major downtimes for ad-hoc reparations and a general practice of higher resource and energy expenditure in critical transportation infrastructure, which in turn even leads to adverse consequences for actors in the transportation network. Though technological developments are rapidly advancing in the transport-, sensing-, and computational fields, such advances are rarely systemically implemented or exploited for infrastructure maintenance planning. Technologies that make the road itself 'smart' are still in a pilot- or project phase and are still generally underutilized on a larger scale. There is a significant risk that possible sustainability benefits on changes in the vehicle side (e.g., towards an autonomous or electrical vehicle fleet) are overshadowed by the continuous sustainability losses from the lack of changes on the infrastructure maintenance side. Pathways are therefore needed to show how such technologies can be embedded in the daily and long-term management of transport infrastructure to improve the sustainability of the entire transportation chain. 

For this reason, the ELISA project (Energy Effective Logistics and Infrastructure Systems Assessment for Cargo Port) started in 2019, with a focus on the recently built port of Norvik in the south of Stockholm for the development of a digital twin model. The project constituted a team of KTH researchers with different backgrounds that, together with stakeholders from the port, focused on developing and demonstrating how a digital twin of the port could be made as realistic as possible and thus contribute to the necessary paradigm shift. This thesis is one of the three research projects that were part of the ELISA project that, together, aimed to provide a systemic way forward for freight transportation systems on how enhanced digitization, automation, and sustainability of individual components and processes can lead to enhanced energy efficiency. 

In this thesis, the parts of the digital twin model that represent the actual physical geometries of the pavements, the characterization and the modeling of the mechanical pavement material properties and their degradation, the linking to the actual in-situ status of the pavements at the port as well as the coupling with the logistics model where developed. The aim of this thesis was thus to demonstrate that through the two-way coupling of the physical (pavement) and the virtual (operations) infrastructure of the port,  the twin model has the potential to support and guide sustainability improvements of the port's infrastructure system by decreasing overall resource and energy usage. To reach this aim, this thesis consists of three parts: the identification and critical evaluation of tools that could be part of the feedback loop of data from the physical object (the port) towards the digital twin, the building of the actual framework of the digital twin and the demonstration of its potential use:

  • An important aspect of digital twins is that they enable a continuous interaction with the in-situ status of the physical object that is being modeled. Therefore, in the first stage of the thesis, some key components that could provide continuous pavement monitoring input from the Norvik port were explored. From this, more specifically, the feasibility of unmanned aerial vehicles (UAV) and a wide range of sensor technologies for reliable information acquisition at the port were evaluated.
  • Focusing on a predictive approach and treating pavement distresses before they require large interventions makes it possible to enhance the system's sustainability as a whole. This required a computational model that could represent the geometry and material properties of the physical object (Norvik port). Therefore, pavement materials were collected from the port and tested in the laboratory for their mechanical properties and moisture susceptibility. The BIM information from the port's construction phase was updated with the details of the finalized pavement structures. A material model that could represent the visco-elasto-plastic nature of the asphaltic layers in the pavement was calibrated based on the lab data, and Finite Element models, representing the geometries and the material properties at the port, were developed for the sections of the port that were considered critical.
  • The developed finite element model was coupled to the logistics model to form the digital twin of the port and enable demonstration of how the service life of the port's infrastructure can be affected by changing the port's operations and how the developed model could thus enhance the port's maintenance planning more holistically. Detailed scenario analyses were conducted for the three most important critical areas that demonstrate the digital twin's capabilities in extending the infrastructure's service life by connecting different systems typically viewed as independent.

The use-case of the port had the benefit of being a semi-closed system with very well-developed logistics operations behind it. As ports generally are operations-based, downtime has very clear consequences for the economics of the facility and affects the transportation value chain immediately. Though the focus of this thesis is thus on the Norvik facility, the overall intention is to demonstrate that coupling of different parts of the transportation value chain is needed to enhance the overall sustainability of the transportation system and to demonstrate that the pavement, today merely seen a facilitator of mobility, should be given a more important part in this journey. With the advent of digitization within the transportation sector, it is therefore not an unlikely scenario that the ability to direct traffic with the focus on extending pavement lifetime will even become a likely scenario for more open transportation systems. 

Abstract [sv]

Det finns ett stort behov av att göra sättet på vilket människor och gods förflyttar sig mer hållbart. Även om vägbeläggning är en av de viktigaste komponenterna i vägtransportsnät och logistiksystem, så bortses de vanligtvis i systematiska hållbarhetsanalyser. Detta innebär betydande "downtime" för ad hoc-reparationer och en generell praxis med högre resurs- och energiförbrukning inom kritisk transportinfrastruktur, vilket i sin tur leder till ogynnsamma konsekvenser för aktörer inom transportnätverket. Även om teknologiska framsteg snabbt sker inom transport-, sensor- och datavetenskapliga områden, så implementeras sådana framsteg sällan systematiskt eller utnyttjas för planering av infrastrukturs underhåll. Teknologier som gör själva vägen "smart" befinner sig fortfarande i pilot- eller projektstadiet och används inte i större utsträckning. Det finns en betydande risk att potentiella hållbarhetsvinster genom förändringar på fordonssidan (till exempel mot en flotta av autonoma eller elektriska fordon) skuggas av de kontinuerliga hållbarhetsförlusterna på infrastrukturs underhållssidan. Därför behövs det sätt för att visa hur sådana teknologier kan integreras i daglig och långsiktig förvaltning av transportinfrastruktur för att förbättra hållbarheten i hela transportkedjan.

Av denna anledning startade projektet ELISA (Energy Effective Logistics and Infrastructure Systems Assessment for Cargo Port) år 2019, med fokus på den nyligen byggda hamnen Norvik i södra Stockholm för utvecklingen av en digital tvillingmodell. Projektet bestod av ett team av KTH-forskare med olika bakgrunder som tillsammans med intressenter från hamnen arbetade med att utveckla och demonstrera hur en digital tvilling av hamnen kunde göras så realistisk som möjligt och därigenom bidra till det nödvändiga paradigmskiftet. Denna avhandling är en av de tre forskningsprojekt som ingick i ELISA-projektet och som tillsammans syftade till att erbjuda en systematisk väg framåt för godstransportsystem om hur ökad digitalisering, automatisering och hållbarhet för enskilda komponenter och processer kan leda till förbättrad energieffektivitet.

I denna avhandling utvecklades delarna av den digitala tvillingmodell som representerar de faktiska fysiska geometrierna av vägbeläggning strukturer, karakteriseringen och modelleringen av de mekaniska vägbeläggnings materialens egenskaper och deras nedbrytning, kopplingen till den faktiska in-situ-statusen för vägbeläggningarna vid hamnen samt kopplingen till logistikmodellen. Målet med denna avhandling var därför att visa att genom tvåvägskopplingen av den fysiska (vägbeläggningen) och den virtuella (operationerna) infrastrukturen vid hamnen har tvillingmodellen potential att stödja och vägleda hållbarhetsförbättringar av hamnens infrastruktursystem genom att minska den totala resurs- och energianvändningen. För att uppnå detta mål består denna avhandling av tre delar: identifiering och kritisk utvärdering av verktyg som kan ingå i återkopplingsloopen för data från den fysiska objektet (hamnen) till den digitala tvillingen, utvecklingen av själva ramverket för den digitala tvillingen och demonstrationen av dess potentiella användning:

  •  En viktig aspekt av digitala tvillingar är att de möjliggör en kontinuerlig interaktion med den faktiska statusen för det fysiska objekt som modelleras. Därför utforskades i den första fasen av avhandlingen några nyckelkomponenter som kunde ge kontinuerlig övervakning av vägbeläggning från Norviks hamn. Mer specifikt utvärderades möjligheten att använda obemannade flygfordon (UAV) och olika sensorteknologier för pålitlig informationsinhämtning vid hamnen.
  • Genom att fokusera på en förebyggande strategi och behandla vägbeläggnings problem innan de kräver stora ingrepp blir det möjligt att förbättra systemets hållbarhet som helhet. Detta krävde en beräkningsmodell som kunde representera geometrin och materialens egenskaper hos det fysiska objektet (Norviks hamn). Därför samlades vägbeläggningsmaterial in från hamnen och testades i laboratoriet för deras mekaniska egenskaper och känslighet för fukt. BIM-informationen från hamnens byggfas uppdaterades med detaljer om de färdiga vägbeläggningsstrukturerna. En materialmodell som kunde representera asfaltlagrens viskoelastoplastiska natur kalibrerades baserat på labbdata, och Finite Element modeller som representerade geometrin och materialens egenskaper vid hamnen utvecklades för de sektioner av hamnen som ansågs vara kritiska.
  • Den utvecklade Finite Elemement modellen kopplades till logistikmodellen för att bilda hamnens digitala tvilling och möjliggöra demonstration av hur infrastrukturens livslängd kan påverkas genom att ändra hamnens operationer och hur den utvecklade modellen således kan förbättra hamnens underhållsplanering mer holistiskt. Det utfördes detaljerade scenarioanalyser för de tre mest kritiska områdena som visar den digitala tvillingens förmåga att förlänga infrastrukturens livslängd genom att koppla samman olika system som normalt betraktas som oberoende.

Användningsfallet för hamnen hade fördelen att vara ett delvis slutet system med mycket väletablerade logistikoperationer bakom sig. Eftersom hamnar generellt sett är verksamhetsbaserade har "downtime" tydliga konsekvenser för anläggningens ekonomi och påverkar omedelbart transportvärdekedjan. Även om fokus i denna avhandling ligger på Norviks anläggning är den övergripande avsikten att visa att koppling av olika delar av transportvärdekedjan behövs för att förbättra transportsystemets övergripande hållbarhet och att vägbeläggningarna, som idag bara betraktas som en underlättare för rörlighet, bör ges en viktigare roll i detta arbete. Med framväxten av digitalisering inom transportsektorn är det därför inte en osannolik scenariogift att möjligheten att styra trafik med fokus på att förlänga vägbeläggningslivslängden även blir ett troligt scenario för mer öppna transportsystem.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 127
Series
TRITA-ABE-DLT ; 2340
Keywords [en]
pavement management, digital twins, finite element model pavement, infrastructure maintenance.
Keywords [sv]
Vägunderhåll, Digitala tvillingar, Ändliga elementmodeller för vägar, Infrastrukturförvaltning
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering; Civil and Architectural Engineering, Structural Engineering and Bridges
Identifiers
URN: urn:nbn:se:kth:diva-338854ISBN: 978-91-8040-746-5 (print)OAI: oai:DiVA.org:kth-338854DiVA, id: diva2:1807949
Public defence
2023-11-24, F3, Lindstedtsvägen 26 & 28, KTH Campus, https://kth-se.zoom.us/j/67042642603, Stockholm, 14:00 (English)
Opponent
Supervisors
Projects
ELISA
Funder
Swedish Energy Agency, 46931-1
Note

QC231030

Available from: 2023-10-30 Created: 2023-10-29 Last updated: 2023-11-15Bibliographically approved
List of papers
1. Towards the application of drones for smart pavement maintenance
Open this publication in new window or tab >>Towards the application of drones for smart pavement maintenance
2020 (English)In: Advances in Materials and Pavement Performance Prediction II - Contributions to the 2nd International Conference on Advances in Materials and Pavement Performance Prediction, AM3P 2020, Balkema, 2020, p. 85-88Conference paper, Published paper (Refereed)
Abstract [en]

Drones have benefited multiple sectors because of their simplicity, low cost, and adaptability. However, the use of this technology for pavement monitoring is not well extended. The main goal of the present research is evaluating the application of UnmannedAerial Systems (UAS) for pavement monitoring, by means of case study in the Norvik Port, Sweden. The study presents different aspects and issues that should be considered while implementing a UAS. The main results of the work show the improvement opportunities, successes, capability and feasibility of the UAS selected by the Norvik operator to capture the different defects that can occur in the pavement of the port. As a conclusion, it was suggested that UAS are a viable tool for monitoring defects in the pavement. However, the precision, accuracy, quality and relevancy of the data are influenced by the rigor and quality control applied during the implementation process.

Place, publisher, year, edition, pages
Balkema, 2020
Keywords
Defects, Drones, Case-studies, Implementation process, Low-costs, Pavement maintenance, Pavement monitoring, Pavements
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-312379 (URN)2-s2.0-85117392905 (Scopus ID)
Conference
2nd International Conference on Advances in Materials and Pavement Performance Prediction, AM3P 2020, 27 May 2020 through 29 May 2020, San Antonio
Note

QC 20220615

Part of proceedings: ISBN 978-036746169-0

Available from: 2022-05-17 Created: 2022-05-17 Last updated: 2023-10-29Bibliographically approved
2. Sensing the road: a review on available sensors for moisture detection in pavements
Open this publication in new window or tab >>Sensing the road: a review on available sensors for moisture detection in pavements
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Moisture today is still one of the key contributors to pavement deterioration. As we are moving towards higher demands on long-term road performance and increased wet periods due to climate change, ad-hoc infrastructure failures can no longer be sustained. Embedding sensors that enable a timely assessment of possible unexpected local deteriorations could prevent unsafe situations and promote preventive maintenance actions. Selecting from a wide range of sensors and sensor systems, and effectively implementing and managing them in road conditions, is a challenging task due to the rapid advancement in this field as well as the harsh conditions the sensors will be exposed to. Thus, this paper gives i) a comprehensive state-of-the-artoverview of past and current sensor pavement studies, ii) an overview of various types of relevant moisture detection sensors, and iii) a critical discussion of their advantages and disadvantages against a set of important criteria, such as sensor invasiveness, lifetime, energy consumption, sample rate, and costs. Sensors will rarely be the sole solution for pavement damage prevention and should always be seen as important information to be used in a larger context, which often includes damage prediction models. Nevertheless, validation of model predictions and timely warning signals when behavior unexpectedly deteriorates are important and largely missing today. As such, the aim of this paper is to guide readers in selecting the right sensors for pavement moisture detection and enhancing transportation sustainability.

Keywords
Moisture sensors; humidity sensors; pavement sensors; sensor review
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-338795 (URN)
Projects
ELISA
Funder
Swedish Energy Agency, 46931-1
Note

QC 20231030

Available from: 2023-10-26 Created: 2023-10-26 Last updated: 2023-10-30Bibliographically approved
3. Digital twin for Norvik Port in Sweden: A focus on modern pavement management
Open this publication in new window or tab >>Digital twin for Norvik Port in Sweden: A focus on modern pavement management
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The importance of pavement maintenance to achieve sustainability and efficiency goals of transportation infrastructure is often overlooked. Neglecting maintenance for critical infrastructure can lead to major downtimes for ad-hoc reparations and higher resource and energy expenditure for both the infrastructure and the value chain it supports. The present article develops a framework for pavement maintenance in Norvik port, Sweden, which aims to extend pavement lifespan by preventing local overloading and improving systemic decision-making. The framework explores the different components and provides guidance on the systems to collect information in Norvik. Once the information is collected, the framework revisits the decision-making process and available tools. By treating pavement distresses before they require large interventions, the framework focuses on a predictive approach to manage the pavement and enhance the system’s sustainability as a whole. Initial results for the analysis of the Norvik port are presented, where the future performance of the different pavement structures in the port is predicted. The framework identifies critical areas in Norvik port that are most susceptible to damage, points the way toward where detailed analysis will be of large value, and lays a basis for future scenario analysis with a dynamic analysis of the logistics simulation model.

Keywords
Infrastructure maintenance; Pavement maintenance; Digital twin; Pavement maintenance framework; Predictive pavement evaluation; Sustainable ports.
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-338800 (URN)
Projects
ELISA
Funder
Swedish Energy Agency, 46931-1
Note

QC 20231030

Available from: 2023-10-26 Created: 2023-10-26 Last updated: 2023-10-30Bibliographically approved
4. Optimizing port longevity and efficiency: Enhancing the pavement durability via logistics at Norvik Port
Open this publication in new window or tab >>Optimizing port longevity and efficiency: Enhancing the pavement durability via logistics at Norvik Port
(Swedish)Manuscript (preprint) (Other academic)
Abstract [en]

The present article evaluates the impact of modifying operational and logistics parameters to extend service life and improve maintenance planning at Norvik Port, south of Stockholm, Sweden. The study uses a scenario analysis methodology, conducting three analyses with multiple scenarios to assess critical areas within the port. First, a background of the situation of the port is provided through information from different sources like the logistics model in the port, the building information model (BIM), and a visual inspection of the pavement, among others. Subsequently, each critical area is analyzed with the help of a finite element model (FEM) to evaluate possible damage mitigation solutions coupled with how changes in port operation can improve pavement resilience and durability. Results for the three different analyses are presented. The findings highlight the potential benefits of modifying operational parameters and exploring alternative solutions to enhance the pavement’s life cycle in the ports, reducing downtime, improving the sustainability of the infrastructure, and increasing the efficiency of operations in the port. By implementing these findings, port authorities can enhance the longevity, sustainability, and resilience of the infrastructure while improving operational efficiency and reducing costs, material use, and energy consumption from maintenance activities. This study, therefore, aims to contribute to the growing body of knowledge on optimizing port logistics and pavement management, providing valuable insights for port authorities, pavement managers, and decision-makers.

Keywords
Pavement maintenance, digital twin, port maintenance, pavement sustainability
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-338803 (URN)
Projects
ELISA
Funder
Swedish Energy Agency, 46931-1
Note

QC 20231030

Available from: 2023-10-26 Created: 2023-10-26 Last updated: 2023-10-30Bibliographically approved

Open Access in DiVA

Summary(79287 kB)715 downloads
File information
File name FULLTEXT01.pdfFile size 79287 kBChecksum SHA-512
5f42bda8c3ef67530bffcf4118554994915a24d15049b7bcf9d9cee8b1309604de0f2d3a47fd6e520e6350700cfddad4a684ddb277703d1dddb97d629f48e0e2
Type fulltextMimetype application/pdf

Authority records

Rodriguez, Julian Dario

Search in DiVA

By author/editor
Rodriguez, Julian Dario
By organisation
Structural Engineering and Bridges
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 715 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2121 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf