kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sustainable valorization of Biomass into Syngas/H2 via Biocarbon catalyst
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Process.ORCID iD: 0000-0001-9884-1278
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Environmental issues stemming from the rapid growth in global energy demand and carbon dioxide emissions require urgent resolutions. Biomass represents a viable alternative for displacing fossil fuels, as its energy can be converted into electricity, heat, fuels, and chemical precursors, thus substituting petrochemicals. It is also the only carbon-containing renewable resource with substantial potential to mitigate environmental degradation, attain carbon-negative emissions, and drive sustainable development. Syngas production from biomass pyrolysis and in-line catalytic upgrading has attracted an increased attention, since it is a promising approach for further generating renewable bio-fuels, bio-chemicals, and bio-materials. Hydrogen isolated from bio-syngas is a clean and promising secondary energy source and carrier, capable of advancing a carbon-free energy system across technological, economic, and societal dimensions. 

This dissertation aims to realize a full valorization of biomass into renewable and affordable hydrogen-rich syngas and carbon-based battery anodes (hard carbons) through pyrolysis and in-line catalytic upgrading using biochar as the core of the catalyst strategy. Biochar, a carbon-enriched solid material with a carbon-neutral nature, emerges as a promising catalyst for promoting volatile upgrading owing to its extensively functionalized surface, porous structure, and resistance to coke deactivation.

Optimization of the catalyst strategy using biochar-based catalysts in the catalytic upgrading process to enhance syngas quality is critical for scaling up the proposed process. This dissertation first investigated the effect of Ni-based, biochar, cascaded biochar+Ni-based, and engineered biochar catalysts on the catalytic performance in terms of the syngas yield, hydrogen yield, and gas energy conversion efficiency (GECE). Among them, the cascaded biochar+Ni-based catalyst and the Ni-doped biochar (NiBC) catalyst showed the most excellent catalytic performance. Using NiBC as a reforming catalyst introduced 78.2 wt. % of syngas consisting of an H2+CO proportion of 94.6 vol. % while applying cascaded biochar + NiAlO catalyst strategy resulted in 71 wt. % of syngas with a total H2+CO proportion of 89.5 vol. %. However, after a three-time test repetition, the Ni-doped biochar catalyst showed a slightly decreasing catalytic performance. In contrast, the cascaded biochar+NiAlO catalyst showed a stable promoting performance in terms of syngas and H2 yields after 15 feeding cycles. In addition, plastic waste, being a carbonaceous resource, was also applied in the pyrolysis and in-line catalytic upgrading process for hydrogen and high-value-added carbon production by using biochar as a cracking catalyst. 

In order to evaluate the techno-economic viability of the proposed process, a novel biorefinery concept was simulated and assessed based on the above results, aiming to produce affordable hydrogen and high-quality hard carbons from biomass and to realize negative carbon emissions. The proposed biorefinery was estimated to produce 75 kg of H2, 169 kg of hard carbon, and 891 kg of captured CO2 (95% purity) per metric ton of biomass while realizing a payback period (PBP) within two years at reference prices of 13.7 €/kg and 5 €/kg for HCs and H2. At the same time, a negative emission of the proposed biorefinery could be achieved with -0.89 kg CO2-eq/kg-biomass based on Sweden’s wind electricity, considering the captured CO2.

A pilot-scale system using a continuous pyrolysis reactor was deployed to scale up the capacity of the proposed process. The catalytic performance of biochar was examined in terms of products’ distribution, gas composition and gas properties. Critical parameters, such as the weight hourly space velocity (WHSV), particle size and the morphology of the catalysts, and pressure drop of the catalyst bed, were evaluated. The results showed that a lower WHSV favours a higher syngas yield, a higher H2+CO proportion, and a higher hydrogen yield due to a longer residence time for volatiles-char contacts. Smaller catalyst particle sizes correspond to higher bed pressure drop, which resulted in a higher syngas and hydrogen yield. In addition, biochar particles with larger bulk density and more spherical and rounded shape introduced higher syngas yield, H2 +CO proportion, and H2 yield compared to the particles with elongated and angular shape. The stability of using biochar as a catalyst in a continuous feeding system was also examined and verified in this dissertation, which indicated its great anti-coking performance.

Abstract [sv]

Miljöproblem som uppkommer från den snabba tillväxten av den global energiefterfrågan och koldioxidutsläpp kräver brådskande lösningar. Biomassa representerar ett hållbart alternativ för att ersätta fossila bränslen, eftersom dess energi kan omvandlas till elektricitet, värme, bränslen och kemiska prekursorer och därigenom ersätta petrokemikalier. Det är också den enda existernade kolbaserade förnybara resursen och som har en betydande potential att mildra miljöförstöring, uppnå koldioxidnegativa utsläpp och driva hållbar utveckling. En syngasproduktion från en kombinerad pyrolys av biomassa och en katalytisk uppgradering har attraherat ökad uppmärksamhet, eftersom det är ett övertygande tillvägagångssätt för att generera förnybara biodrivmedel, biokemikalier och biomaterial. Vätgas som isolerats från bio-syngas utgör en ren och lovande sekundär energikälla och bärare som kan främja ett kolfritt energisystem med avseende på teknologiska, ekonomiska och samhälleliga dimensioner.

Denna avhandling syftar till att förverkliga en fullständig värdering av biomassa till förnybart och prisvärt väte-rik syngas och kolbaserade batterianoder (hårdkol) genom att använda pyrolys i kombnination med en katalytisk uppgradering  där biokol används som kärnan i katalysstrategin. Biokol, som är ett kolberikat fast material med en koldioxidneutral natur, framstår som en lovande katalysator för att främja en uppgradering av flyktiga komponenter på grund av dess omfattande funktionaliserade yta, porösa struktur och motståndskraft mot kokning.

En optimering av katalysatorstrategin med biokolbaserade katalysatorer i den katalytiska uppgraderingsprocessen för att förbättra syngaskvaliteten är avgörande och grundläggande för att skala upp den föreslagna processen. Denna avhandling undersökte först effekten av användandet av Ni-baserade, biokol, kaskad biokol+Ni-baserad och ingenjörskonstruerade biokolkatalysatorer på den katalytiska prestandan med avseende på syngasutbyte, väteutbyte och effektivitet för gasenergikonvertering (GECE). Bland dessa så var prestandan med användande av kaskad biokol+Ni-baserad och Ni-tillsatt biokolkatalysatorer de bästa. Användning av NiBC som en reformeringskatalysator introducerade 78,2 viktprocent av syngas bestående av en H2+CO-andel på 94,6 volymprocent, medan tillämpning av kaskadbiokol + NiAlO katalysatorstrategi resulterade i 71 viktprocent av syngas med en total H2+CO-andel på 89,5 volymprocent. Dock visade försöken med en Ni-tillsatt biokolkatalysator en något minskad katalytisk prestanda efter tre upprepningar, medan försöken med en kaskad biokol+NiAlO-katalysatorn visade en stabil prestanda med avseende på syngas- och H2-utbyten efter använding under 15 cykler. Försök med plastavfall, som är en kolbaserad resurs, gjordes också med den kombinerade pyrolysen följt av en katalytisk uppgraderingsprocess för produktion av väte och värdefulla kolprodukter med hjälp av biokol som kracknings katalysator.

Dessutom så utvärderades genomförbarheten av den föreslagna processen genom framtagande och simuleringar av ett ny bioraffinaderikoncept baserad på ovanstående resultat, med målet att producera väte och högkvalitativa hårda kol till på ett ekonomiskt gångbart sätt från biomassaavfall under en samtida generering av negativa koldioxidutsläpp. Den föreslagna bioraffinaderikonceptet beräknades producera 75 kg H2, 169 kg HCs och 891 kg CO2 (95% renhet) per metrisk ton biomassaavfall. Dessutom så beräknades återbetalningstiden (PBP) till upp till två år vid referenspriser på 13,7 €/kg och 5 €/kg för HCs och H2. Samtidigt uppnåddes en negativ emission för den föreslagna bioraffinaderikonceptet motsvarande -0,89 CO2-ekv/kg biomassa baserat på svensk vindkraftsel, med hänsyn till koldioxidinfångning.

Slutligen implementerades ett pilotskaligt system med en kontinuerlig pyrolys reaktor för att skala upp kapaciteten hos den föreslagna processen. Den katalytiska prestandan undersöktes i termer av produktfördelning, gassammansättning och gasegenskaper. Följande kritiska parametrar utvärderades: viktig per timme rymdhastighet (WHSV), partikelstorlek och katalysatorernas morfologi, tryckfall i katalysatorbädden. Resultaten visade att ett lägre WHSV värde gynnar ett högre syngasutbyte, en högre H2+CO-andel och ett högre vätgasutbyte på grund av en längre uppehållstid för kontakter mellan flyktiga ämnen och kol. Mindre katalysatorpartikelstorlekar innebär högre tryckfall i bädden, vilket resulterade i högre syngas- och väteutbyten. Dessutom introducerade biokolpartiklar med högre bulkdensitet och mer sfärisk och rundad form ett högre syngasutbyte, H2+CO-andel och vätgasutbyte, jämfört med partiklar med en osfärsik formjämfört med partiklarna med långsträckt och kantig form. Stabiliteten vid användning av biokol som katalysator i ett kontinuerligt matningssystem undersöktes också och verifierades i denna avhandling, dess utmärkta anti-koksningsprestanda.

Nyckelord:  Pyrolys, Katalytisk uppgradering, Biomassa, Biokol, Syngas, Vätgas

 

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. , p. 203
Series
TRITA-ITM-AVL ; 2023:29
Keywords [en]
Pyrolysis, Catalytic upgrading, Biomass, Biochar, Syngas, Hydrogen
National Category
Energy Engineering
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-339174ISBN: 978-91-8040-718-2 (print)OAI: oai:DiVA.org:kth-339174DiVA, id: diva2:1809519
Public defence
2023-11-29, F3 / https://kth-se.zoom.us/j/67653191025, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2023-11-08 Created: 2023-11-03 Last updated: 2023-11-21Bibliographically approved
List of papers
1. High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors
Open this publication in new window or tab >>High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors
Show others...
2022 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 322, p. 119501-, article id 119501Article in journal (Refereed) Published
Abstract [en]

A novel pyrolysis followed by in-line cascaded catalytic reforming process without additional steam was developed to produce high-purity syngas from woody biomass. The key to the proposed process is the construction of a cascaded biochar + NiAl2O4 catalytic reforming process in which biochar acts as a pre-reforming catalyst, and NiAl2O4 acts as a primary reforming catalyst. The large oxygenates in the pyro-vapors are deeply cracked in the biochar layer due to the increased residence time in the hot-biochar bed. The remaining small molecules are then reformed with the autogenerated steam from pyrolysis catalyzed by the reduced Ni0 species in the NiAl2O4 catalyst (NiAlO). The results showed that the yield of syngas for the optimized process was 71.28 wt% (including 44.44 mg-H2/g-biomass and 536.48 mg-CO/g-biomass), and the CO2 yield of the process was only 3 kg-CO2/kg-hydrogen. High-purity syngas with 89.47 vol% of (H2 + CO) was obtained, and the gas energy conversion efficiency (GECE) of the process reached 75.65%. The study shows that in the cascaded catalytic reforming process, cracking of the large oxygenates and reforming of the small molecules are promoted sequentially in separated biochar + NiAlO catalyst layers, which maximizes the syngas production and improves the activity and stability of the Ni-based catalyst.

Place, publisher, year, edition, pages
Elsevier BV, 2022
Keywords
Syngas, Biomass, Pyrolysis, Cascaded catalysts, Reforming
National Category
Bioenergy Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-316430 (URN)10.1016/j.apenergy.2022.119501 (DOI)000833364400004 ()2-s2.0-85132935348 (Scopus ID)
Note

Correction in: DO 10.1016/j.apenergy.2022.120417 and DOI 10.1016/j.apenergy.2022.119501

QC 20220818

Available from: 2022-08-18 Created: 2022-08-18 Last updated: 2025-02-18Bibliographically approved
2. Evaluation of Engineered Biochar-Based Catalysts for Syngas Production in a Biomass Pyrolysis and Catalytic Reforming Process
Open this publication in new window or tab >>Evaluation of Engineered Biochar-Based Catalysts for Syngas Production in a Biomass Pyrolysis and Catalytic Reforming Process
Show others...
2023 (English)In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 37, no 8, p. 5942-5952Article in journal (Refereed) Published
Abstract [en]

Biochar, originating from biomass pyrolysis, has been proven a promising catalyst for tar cracking/reforming with great coke resistance. This work aims to evaluate various engineered biochar-based catalysts on syngas production in a biomass pyrolysis and catalytic reforming process without feeding extra steam. The tested engineered biochar catalysts include physical- and chemical-activated, nitrogen-doped, and nickel-doped biochars. The results illustrated that the syngas yields were comparable when using biochar and activated biochar as catalysts. A relatively high specific surface area (SSA) and a hierarchical porous structure are beneficial for syngas and hydrogen production. A 2 h physical-activated biochar catalyst induced the syngas with the highest H2/CO ratio (1.5). The use of N-doped biochar decreased the syngas yield sharply due to the collapse of the pore structure but obtained syngas with the highest LHVgas (18.5MJ/Nm3). The use of Ni-doped biochar facilitated high syngas and hydrogen yields (78.2 wt % and 26 mmol H2/g-biomass) and improved gas energy conversion efficiency (73%). Its stability and durability test showed a slight decrease in performance after a three-time repetitive use. A future experiment with a longer time is suggested to determine when the catalyst will finally deactivate and how to reduce the catalyst deterioration.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2023
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-330966 (URN)10.1021/acs.energyfuels.3c00410 (DOI)000962149600001 ()2-s2.0-85151322199 (Scopus ID)
Note

QC 20230705

Available from: 2023-07-05 Created: 2023-07-05 Last updated: 2023-11-03Bibliographically approved
3. Carbon and H-2 recoveries from plastic waste by using a metal-free porous biocarbon catalyst
Open this publication in new window or tab >>Carbon and H-2 recoveries from plastic waste by using a metal-free porous biocarbon catalyst
Show others...
2023 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 404, article id 136926Article in journal (Refereed) Published
Abstract [en]

Carbon and H2 recoveries from plastic waste enable high value-added utilizations of plastic waste while mini-mizing its GHG emissions. The objective of this study is to explore the use of a metal-free biocarbon catalyst for waste plastic pyrolysis and in-line catalytic cracking to produce H2-rich gases and carbon. The results show that the biocarbon catalyst exhibits a good catalytic effect and stability for various plastic wastes. Increasing the C/P ratio from 0 to 2, induce an increase in the conversion rate of C and H in plastics to carbon and H2 from 57.1% to 68.7%, and from 22.7% to 53.5%, respectively. Furthermore, a carbon yield as high as 580.6 mg/gplastic and an H2 yield as high as 68.6 mg/gplastic can be obtained. The hierarchical porous structure with tortuous channels of biocarbon extends the residence time of pyrolysis volatiles in the high-temperature catalytic region and thereby significantly promotes cracking reactions.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Biocarbon catalyst, Plastic pyrolysis, Hydrogen, Catalytic cracking
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-327174 (URN)10.1016/j.jclepro.2023.136926 (DOI)000971689600001 ()2-s2.0-85151275989 (Scopus ID)
Note

QC 20230524

Available from: 2023-05-24 Created: 2023-05-24 Last updated: 2023-11-03Bibliographically approved
4. Carbon-negative valorization of biomass waste into affordable green hydrogen and battery anodes
Open this publication in new window or tab >>Carbon-negative valorization of biomass waste into affordable green hydrogen and battery anodes
Show others...
2024 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 49, p. 459-471Article in journal (Other academic) Published
Abstract [en]

The global Sustainable Development Goals highlight the necessity for affordable and clean energy, designated as SDG7. A sustainable and feasible biorefinery concept is proposed for the carbon-negative utilization of biomass waste for affordable H2 and battery anode material production. Specifically, an innovative tandem biocarbon + NiAlO + biocarbon catalyst strategy is constructed to realize a complete reforming of biomass pyro-vapors into H2+CO (as a mixture). The solid residues from pyrolysis are upgraded into high-quality hard carbon (HCs), demonstrating potential as sodium ion battery (SIBs) anodes. The product, HC-1600-6h, exhibited great electrochemical performance when employed as (SIBs) anodes (full cell: 263 Wh/kg with ICE of 89%). Ultimately, a comprehensive process is designed, simulated, and evaluated. The process yields 75 kg H2, 169 kg HCs, and 891 kg captured CO2 per ton of biomass achieving approx. 100% carbon and hydrogen utilization efficiencies. A life cycle assessment estimates a biomass valorization process with negative-emissions (−0.81 kg CO2/kg-biomass, reliant on Sweden wind electricity). A techno-economic assessment forecasts a notably profitable process capable of co-producing affordable H2 and hard carbon battery anodes. The payback period of the process is projected to fall within two years, assuming reference prices of 13.7 €/kg for HCs and 5 €/kg for H2. The process contributes to a novel business paradigm for sustainable and commercially viable biorefinery process, achieving carbon-negative valorization of biomass waste into affordable energy and materials.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Biomass, Pyrolysis, Catalytic reforming, Biochar, Syngas, Auger
National Category
Energy Engineering Materials Chemistry
Research subject
Energy Technology; Chemical Engineering; Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-339172 (URN)10.1016/j.ijhydene.2023.09.096 (DOI)001132794800001 ()2-s2.0-85172247785 (Scopus ID)
Funder
Vinnova, 2021-03735
Note

QC 20231106

Available from: 2023-11-03 Created: 2023-11-03 Last updated: 2025-02-25Bibliographically approved
5. Syngas production from biomass pyrolysis followed by in-line biochar-catalytic reforming: the effect of space velocity, particle size, and morphology
Open this publication in new window or tab >>Syngas production from biomass pyrolysis followed by in-line biochar-catalytic reforming: the effect of space velocity, particle size, and morphology
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

A syngas production based on a biomass pyrolysis followed by an in-line catalytic reforming process is a promising method to help curb greenhouse gas emissions. The use of biochar as the reforming catalyst is economically and technologically attractive. A continuous pyrolysis combined with an in-line biochar-catalytic reforming of the pyrolysis vapor was investigated in a comprehensive system consisting of an auger reactor and a downstream fixed-bed rector. The effect of the weight hourly space velocity (WHSV), particle size and morphology of biochar, and the pressure drop of the biochar bed on the catalytic performance were discussed. The results indicated that a higher syngas yield with a higher H2+CO proportion was obtained when using a lower WHSV, due to a longer residence time. The highest syngas and H2 yields were obtained when using biochar with the smallest particles sizes (0.6-1 mm), i.e. the highest bed pressure drops. The use of biochar particles, which are more spherical and rounded, resulted in higher syngas yields, H2 +CO proportions, and H2 yields due to the enhanced heat and mass transfer favored by the rounded shape. Up to 12 mmol H2/g-biomass was obtained, corresponding to a dry gas yield of 0.68 Nm3/kg , containing 39 vol. % H2 and 27 vol. % CO.  The use of biochar as a reforming catalyst showed a relatively stable catalytic performance after during a 100-minutes of running the experimentexperimental run-time.

Keywords
Biomass, Pyrolysis, Catalytic reforming, Biochar, Syngas, Auger
National Category
Energy Engineering Materials Chemistry
Research subject
Energy Technology; Materials Science and Engineering; Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-339173 (URN)
Funder
Swedish Energy Agency, 51418-1
Note

QC 20231106

Available from: 2023-11-03 Created: 2023-11-03 Last updated: 2023-11-06Bibliographically approved

Open Access in DiVA

fulltext(4216 kB)637 downloads
File information
File name FULLTEXT01.pdfFile size 4216 kBChecksum SHA-512
5fc546970de3c8bc725538d5e6125f749e85e94ad46732debc11512697e1f756f9aa559cde1a23b701631020f9dc956845a64d34b250a1f41286dca14abd8983
Type fulltextMimetype application/pdf

Authority records

Yang, Hanmin

Search in DiVA

By author/editor
Yang, Hanmin
By organisation
Process
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 644 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1225 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf