kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring the Viability of PageRank for Attack Graph Analysis and Defence Prioritization
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Undersökning av PageRanks användbarhet för analys av attackgrafer och prioritering av försvar (Swedish)
Abstract [en]

In today's digital world, cybersecurity is becoming increasingly critical. Essential services that we rely on every day such as finance, transportation, and healthcare all rely on complex networks and computer systems. As these systems and networks become larger and more complex, it becomes increasingly challenging to identify and protect against potential attacks. This thesis addresses the problem of efficiently analysing large attack graphs and prioritizing defences in the field of cybersecurity. The research question guiding this study is whether PageRank, originally designed for ranking the importance of web pages, can be extended with additional parameters to effectively analyze large vulnerability-based attack graphs. To address this question, a modified version of the PageRank algorithm is proposed, which considers additional parameters present in attack graphs such as Time-To-Compromise values. The proposed algorithm is evaluated on various attack graphs to assess its accuracy, efficiency, and scalability. The evaluation shows that the algorithm exhibits relatively short running times even for larger attack graphs, demonstrating its efficiency and scalability. The algorithm achieves a reasonably high level of accuracy when compared to an optimal defence selection, showcasing its ability to effectively identify vulnerable nodes within the attack graphs. In conclusion, this study demonstrates that PageRank is a viable alternative for the security analysis of attack graphs. The proposed algorithm shows promise in efficiently and accurately analyzing large-scale attack graphs, providing valuable insight for identifying threats and defence prioritization.

Abstract [sv]

I dagens digitala värld blir cybersäkerhet allt viktigare. Viktiga tjänster som vi förlitar oss på varje dag, inom t.ex. finans, transport och hälsovård, är alla beroende av komplexa nätverk och datorsystem. I takt med att dessa system och nätverk blir större och mer komplexa blir det allt svårare att identifiera och skydda sig mot potentiella attacker. Denna uppsats studerar problemet med att effektivt analysera stora attackgrafer och prioritera försvar inom cybersäkerhet. Den forskningsfråga som styr denna studie är om PageRank, ursprungligen utformad för att rangordna webbsidor, kan utökas med ytterligare parametrar för att effektivt analysera stora attackgrafer. För att besvara denna fråga föreslås en modifierad version av PageRank-algoritmen, som beaktar ytterligare parametrar som finns i attackgrafer, såsom ”Time-To-Compromise”-värden. Den föreslagna algoritmen utvärderas på olika attackgrafer för att bedöma dess noggrannhet, effektivitet och skalbarhet. Utvärderingen visar att den föreslagna algoritmen uppvisar relativt korta körtider även för större attackgrafer, vilket visar på hög effektivitet och skalbarhet. Algoritmen uppnår en rimligt hög nivå av noggrannhet jämfört med det optimala valet av försvar, vilket visar på dess förmåga att effektivt identifiera sårbara noder inom attackgraferna. Sammanfattningsvis visar denna studie att PageRank är ett potentiellt alternativ för säkerhetsanalys av attackgrafer. Den föreslagna algoritmen visar lovande resultat när det gäller att effektivt och noggrant analysera storskaliga attackgrafer, samt erbjuda värdefull information för att identifiera hot och prioritera försvar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology , 2023. , p. 63
Series
TRITA-EECS-EX ; 2023:734
Keywords [en]
Cybersecurity, PageRank, Attack Graphs, Threat analysis, Threat modelling
Keywords [sv]
Cybersäkerhet, PageRank, Attackgrafer, Hotanalys, Hotmodellering
National Category
Computer Sciences Computer Engineering
Identifiers
URN: urn:nbn:se:kth:diva-339454OAI: oai:DiVA.org:kth-339454DiVA, id: diva2:1811242
Subject / course
Computer Science
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
Available from: 2023-11-17 Created: 2023-11-11 Last updated: 2023-11-17Bibliographically approved

Open Access in DiVA

fulltext(2523 kB)382 downloads
File information
File name FULLTEXT01.pdfFile size 2523 kBChecksum SHA-512
47097d3e9c7a9ff71447d4b1ec2f87322b633549208c1d5aa7e088c7cd8e4da2ccba1be1fa573410d3373d49c32e01a2db980c68f2f2cdd67f8bf468444eecee
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer SciencesComputer Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 382 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 505 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf