kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multi-Objective-Based Human-in-the-Loop Optimization for Ankle Exoskeleton: A Preliminary Experimental Study
KTH, School of Engineering Sciences (SCI), Engineering Mechanics. (KTH MoveAbility Lab)
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. (KTH MoveAbility Lab)ORCID iD: 0000-0002-4679-2934
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. (KTH MoveAbility Lab)ORCID iD: 0000-0002-2232-5258
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. (KTH MoveAbility Lab)ORCID iD: 0000-0001-5417-5939
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Wearable robotic exoskeletons have been explored for their efficacy in physical rehabilitation and for assistance in daily activites in people with motor disorders. The concept of human-in-the-loop optimization has been used to identify ideal exoskeleton assistive torques based on measured individual performance metrics, for instance, metabolic cost, but few studies have attempted to optimize several performance metrics simultaneously.We have previously developed a cable-driven ankle exoskeleton that can provide assistance to the ankle in both sagittal and frontal planes, aimed for persons with dropfoot and excessive inversion. In this study, we propose a multi-objective human-in-the-loop optimization that identifies the ankle exoskeleton properties that improve gait quality, defined here as normal foot segment kinematics and step length symmetry. One able-bodied subject tested the feasibility of the proposed method. The subject wore the exoskeleton while walking on a treadmill. An extra weight was attached on the right foot to simulate the gait deviations associated with dropfoot and excessive inversion.  The Pareto front, comprising six results, was sorted, which illustrated the improvement in both foot segment kinematics and step length symmetry. Within this set of results, each represents a unique compromise or balance between the two objectives, and it was observed that enhancing step length symmetry might lead to an increase in foot segment deviation, showcasing the inherent trade-off relationship between these two aspects.These results suggest that this method can potentially be useful in determining subject-specific exoskeleton control laws that improve several measures of gait in persons with gait disability. 

National Category
Robotics and automation Production Engineering, Human Work Science and Ergonomics
Identifiers
URN: urn:nbn:se:kth:diva-339497OAI: oai:DiVA.org:kth-339497DiVA, id: diva2:1811452
Note

QC 20231120

Available from: 2023-11-13 Created: 2023-11-13 Last updated: 2025-02-05Bibliographically approved
In thesis
1. Design and Control Parameter Optimization of Soft Ankle Exoskeleton for People with Dropfoot and Excessive Inversion
Open this publication in new window or tab >>Design and Control Parameter Optimization of Soft Ankle Exoskeleton for People with Dropfoot and Excessive Inversion
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Alternative title[sv]
Design och Optimering av Kontrollparametrar för Mjuk Fotledsexoskelett för Människor med Fallfot och Överdriven Inversion
Abstract [en]

Wearable robotics and exoskeletons have been explored for their efficacy in physical rehabilitation and for assistance in daily activities for people with motor disorders. The overall objective of this thesis is to design a powered soft exoskeleton for people with dropfoot and excessive inversion, commonly after a stroke, and to optimize the control parameters for each individual while considering different dimensions. This compilation thesis is based on two papers that focus on the design and verification of the ankle joint exoskeleton prototype, and control parameters optimization using human-in-the-loop optimization, respectively.

In the first paper, we presented the design of the powered soft ankle exoskeleton, mainly consisting of the actuation system, Bowden cables, and textile components, to assist two degrees of freedom (DoF), dorsiflexion and eversion, simultaneously.A proof-of-concept study was performed to verify the functionality of the exoskeleton in two aspects: assisting/controlling two DoFs simultaneously and compensating for the resistance during ankle plantarflexion. Our results suggested that two-DoF assistance can be delivered with the structure, and the proposed force-free controller can counteract the inherent resistance in the system.

In the second paper, a multi-objective-based human-in-the-loop optimization method was proposed, aiming at optimizing gait quality in different aspects simultaneously.In this case study, the multi-objective optimization method, Non-dominated Sorting Genetic Algorithm II, was implemented in the human-in-the-loop optimization. Four generations, comprising ten sets of control parameters in each generation, were tested on one non-disabled subject wearing the exoskeleton described in paper I. The results indicated that this novel method can identify the control laws that optimize both gait quality metrics. In the set of solutions, control laws with different focuses can be selected for different purposes or individual uses.

Abstract [sv]

Bärbara robotar och exoskelett har utforskats för deras effektivitet inom fysisk rehabilitering och som stöd i dagliga aktiviteter för personer med motoriska störningar. Det övergripande målet med denna avhandling är att designa en kraftdriven mjuk exoskelett för personer med fallfot och överdriven inversion, vanligt efter en stroke, och att optimera kontrollparametrarna för varje individ med hänsyn till olika dimensioner. Denna sammanställda avhandling bygger på två artiklar som fokuserar på design och verifiering av prototypen för fotledsexoskelett samt optimering av kontrollparametrar med mänsklig medverkan.

I den första artikeln presenterade vi designen av det kraftdrivna mjuka fotledsexoskelettet, som huvudsakligen består av aktiveringssystem, Bowden-kablar och textilkomponenter, för att assistera i två grader av frihet (DoF), dorsiflexion och eversion, samtidigt. En konceptbevisstudie genomfördes för att verifiera funktionen hos exoskelettet avseende två aspekter: assistera/styra två DoFs samtidigt och kompensera för motståndet under plantarflektion i fotleden. Våra resultat antydde att två-DoF-assistans kan levereras med strukturen och att den föreslagna kraftfria styrenheten kan motverka det inneboende motståndet i systemet.

I den andra artikeln föreslogs en mänsklig medverkande optimeringsmetod baserad på flera mål, med syfte att optimera gångkvaliteten i olika aspekter samtidigt. I denna fallstudie implementerades den flerobjektiva optimeringsmetoden Non-dominated Sorting Genetic Algorithm II i den mänskliga medverkansoptimeringen. Fyra generationer, med tio uppsättningar av kontrollparametrar i varje generation, testades på en icke-funktionshindrad försöksperson som bar det exoskelett som beskrivs i den första artikeln. Resultaten indikerade att denna nya metod kan identifiera styrregler som optimerar både gångkvalitetsmått. I uppsättningen lösningar kan styrregler med olika fokus väljas för olika ändamål eller individuella användningsområden.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023
Series
TRITA-SCI-FOU ; 2023:60
Keywords
Assistive device, Biomechanics, Gait impairment, Movement augmentation, Assistiv enhet, Biomekanik, Gångnedsättning, Rörelseförstärkning
National Category
Robotics and automation Production Engineering, Human Work Science and Ergonomics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-339524 (URN)978-91-8040-778-6 (ISBN)
Presentation
2023-12-04, D31, Lindstedtsvägen 5, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 231115

Available from: 2023-11-15 Created: 2023-11-15 Last updated: 2025-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Zhang, XiaochenLiu, YixingWang, RuoliGutierrez-Farewik, Elena

Search in DiVA

By author/editor
Zhang, XiaochenLiu, YixingWang, RuoliGutierrez-Farewik, Elena
By organisation
Engineering MechanicsVehicle Engineering and Solid Mechanics
Robotics and automationProduction Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 1023 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf