kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling of the intrinsic softening of γ-carbides in cemented carbides
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Structures.ORCID iD: 0000-0003-0374-5764
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0002-3635-2206
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Structures. UMET, Unité Matériaux et Transformations, Université de Lille, CNRS, INRAe, Centrale Lille, UMR 8207, 59000, Lille, France.ORCID iD: 0000-0002-7697-9150
AB Sandvik Coromant R&D, Lerkrogsvägen 19, SE-126 80 Stockholm, Sweden.
Show others and affiliations
2023 (English)In: Materials Today Communications, ISSN 2352-4928, Vol. 37, article id 107454Article in journal (Refereed) Published
Abstract [en]

Cemented carbides are widely used materials in industrial applications due to their remarkable combination of hardness and toughness. However, they are exposed to high temperatures during service leading to a reduction of their hardness. A common practice to damp this softening is to incorporate transition metal carbides in cemented carbide compositions, which keeps the hardness relatively higher when temperature increases. Understanding the underlying mechanisms of this softening is crucial for the development of cemented carbides with optimal properties. In this work, atomic-scale mechanisms taking place during plastic deformation are analyzed and linked to the effect that they have on the intrinsic macro-scale softening of the most common TMC used in cemented carbides grades (TiC, ZrC, HfC, VC, NbC and TaC). The proposed model uses the generalized stacking fault energy obtained from density functional theory calculations as an input to Peierls-Nabarro analytical models to obtain the critically resolved shear stress needed for deformation to occur in different slip systems. Subsequently, this information is used to predict the hardness variation across the temperature service range experienced by cemented carbides in wear applications. In addition to the prediction of hot-hardness for TMC, the obtained results also offer valuable insights into the intrinsic mechanisms governing TMCs deformation. The results facilitate the identification of dominant dislocation types influencing plasticity within distinct temperature regimes, define energetically favorable slip systems, and predict the brittle-ductile transition temperature in these materials. For instance, for group IV carbides at low temperatures, the slip system with a lower GSFE is {110}<11̅0> and around 30% of their melting temperature, the GSFE of partial slip in {111}<12̅1> becomes lower, changing the dominant slip mechanism and characterizing the Brittle-Ductile transition.

Place, publisher, year, edition, pages
Elsevier BV , 2023. Vol. 37, article id 107454
Keywords [en]
Cemented carbides, First principles, Hardness, Modelling, Peierls-Nabarro, Transition metal carbides
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-339505DOI: 10.1016/j.mtcomm.2023.107454ISI: 001106978000001Scopus ID: 2-s2.0-85175337788OAI: oai:DiVA.org:kth-339505DiVA, id: diva2:1811757
Note

QC 20231215

Available from: 2023-11-14 Created: 2023-11-14 Last updated: 2024-05-15Bibliographically approved
In thesis
1. ICME tools for the design of cemented carbides
Open this publication in new window or tab >>ICME tools for the design of cemented carbides
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cemented carbides have often been generalized as composite materials composed of hardtungsten carbide (WC) particles embedded in a softer and tougher Cobalt-based matrix. Thisgeneralization has become less accurate over time as alternative binder systems and additionalcarbides (for instance γ-carbides) have been introduced. Such changes have always been drivenby the need to excel in heavy-duty wear applications, as well as, more recently, by the effort tominimize cemented carbide’s social and ecological impact. The development of new grades thatfulfil both goals has been traditionally addressed following a trial-and-error methodology, in whichextensive experimental work must be performed to reach a satisfactory outcome. This leads to longand expensive concept-to-application processes. A more efficient alternative to design sustainablecemented carbides with the required performance is by using the Integrated ComputationalMaterials Engineering (ICME) approach. In this approach models and databases are developed todescribe the relationships between the process-structure-properties-performance (P-S-P-P) of thematerial. These models provide valuable information on the mechanisms ruling the behavior ofthe material at each step in the P-S-P-P chain, which can be used to design new materials moreefficiently.In this work two models are developed, and validated, contributing to an ICME-based frameworkfor the design of cemented carbides. The first model addresses the relationship between the materialstructure and its hardness (property) as a function of temperature. This Hot Hardness model usesstructural information on the mean and variation of the hard phase grain size, and the volume contentof binder to accurately predict the hardness of cemented carbides in a temperature range spanningfrom room temperature up to 1000°C. In addition, the model characterizes the differentmechanisms contributing to softening at elevated temperatures during service. Specifically, theintrinsic softening of the hard phases is in this work described using a Peierls-Nabarro-basedmodel. Further, a method to describe the microstructural rearrangement at high temperatures isproposed.The second model addresses the relationship between the material processing and its structure.The Dynamic C-window model describes the precipitation of detrimental phases in cementedcarbides to redefine the compositional processability limits of these materials, known as the Cwindow.Unlike traditional methods that rely solely on thermodynamic equilibrium calculations,this model also considers the cooling rate and the initial WC grain size, which are influentialprocessing design parameters affecting the width of the C-window. In addition to define a Cwindowthat take kinetics into account, the model also gives insights into the mechanisms rulingthe microstructural evolution during cooling, as well as predicting the particle size distribution ofthe detrimental phases as a function of the considered processing parameters. The modeling resultshave been experimentally validated through the processing and microstructural characterization ofsamples with controlled processing condition. This has allowed to conclude that the C-windowcan effectively be broadened by increasing the cooling rate during processing or/and by increasingthe WC grain size when the application allows it. The implications of this observation on thepotential processing of cemented carbides with alternative binder systems are also described.

Abstract [sv]

Hårdmetaller har ofta generaliserats till ett kompositmaterial av hårda wolframkarbidpartiklar(WC) inbäddade i en mjukare och segare koboltbaserad matris. Denna generalisering har, i taktmed att alternativa bindemedel och ytterligare karbider (γ-karbider) introducerats, blivit alltmermissvisande. Sådana förändringar har drivits av behovet av alltmer krävande industriellaslitageapplikationer, samt av att minimera hårdmetallers miljöpåverkan. Utvecklingen av nyasorter som uppfyller båda dessa mål har traditionellt skett genom en trial-and-error-metod, däromfattande experimentellt arbete måste utföras för att nå ett tillfredsställande resultat. Detta ledertill långa och dyra processer för att gå från koncept till applikation. En effektivare metod för attdesigna hållbara hårdmetaller som har erforderliga egenskaper är genom att använda så kallad”Integrated Computational Materials Engineering” (ICME). I denna metod utvecklas modeller ochdatabaser för att beskriva förhållandet mellan process-struktur-egenskaper-prestanda (P-S-P-P) imaterialet. Dessa modeller ger viktig information om de mekanismer som styr ett materialsbeteende vid varje steg i P-S-P-P-kedjan, vilket i sin tur kan användas för att designa nya materialmer effektivt.I denna avhandling utvecklas och valideras två modeller som bidrar till ett ICME-baseratramverk för design av hårdmetaller. Den första modellen beskriver förhållandet mellan materialetsstruktur och hårdhet (egenskaper) som funktion av dess temperatur. Denna varmhårdhets-modellanvänder strukturell information om hårdfasens kornstorlek och polydispersitet, samt volymsandelbindemedes för att prediktera hårdmetallens hårdhet från rumstemperatur upp till 1000°C.Dessutom beskriver modellen de olika mjukningsmekanismerna som bidrar till minskad hårdhetvid förhöjd temperatur vid användning. Det inre mjuknandet av hårdfaserna beskrivs i detta arbeteav en Peierls-Nabarro-baserad modell. Dessutom presenteras en metod som beskriver denmikrostrukturella omstruktureringen vid höga temperaturer.Den andra modellen som presenteras utforskar förhållandet mellan materialets framställningoch dess struktur. Den kallas för en Dynamic C-window-modell, och beskriver utskiljning avskadliga faser i hårdmetaller i syfte att modifiera begränsningar i sammansättning relaterat tillframställnings-processen, allmänt kallat C-fönster. Till skillnad från traditionella metoder, somenbart förlitar sig på termodynamiska jämviktsberäkningar, beaktar denna modell även viktigaprocessparametrar såsom kylhastigheten och den ursprungliga WC-kornstorleken vilket påverkarbredden på C-fönstret. Utöver att definiera ett C-fönster som tar hänsyn till kinetik ger modellenockså insikter i vilka mekanismer som styr mikrostrukturutvecklingen under kylning. Denmodellerar även partikelstorleksfördelningen av skadliga faser som funktion av deframställningsparametrar som tagits i beaktande. Från modelleringsresultaten och denexperimentella valideringen dras slutsatsen att C-fönstret effektivt kan breddas genom att användahögre kylhastigheter vid framställning av hårdmetaller eller/och genom att öka WC-kornstorlekennär applikationen så tillåter. Konsekvenser av detta för den potentiella framställningen avhårdmetaller med alternativa bindemedel beskrivs också.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 72
Series
TRITA-ITM-AVL ; 2024:11
Keywords
Cemented Carbide, ICME, Materials Design, η-carbides, κ-carbides, γ-carbides, Alternative Binder, Hot Hardness, Thermo-Calc
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-346479 (URN)978-91-8040-901-8 (ISBN)
Public defence
2024-06-14, Lindstedtsvägen 26 / https://kth-se.zoom.us/webinar/register/WN_XVtI6HLwQe-5-pBaJ4TrAg, Sal F2, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2024-05-17 Created: 2024-05-15 Last updated: 2024-06-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Lamelas, VictorTian, LiyunBonvalet-Rolland, ManonLizarrága, RaquelBorgenstam, Annika

Search in DiVA

By author/editor
Lamelas, VictorTian, LiyunBonvalet-Rolland, ManonLizarrága, RaquelBorgenstam, Annika
By organisation
StructuresMaterials Science and EngineeringProperties
In the same journal
Materials Today Communications
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 199 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf