kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Large-scale synthesis of 2D-silica (SiOx) nanosheets using graphene oxide (GO) as a template material
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58 11428 Stockholm Sweden.ORCID iD: 0000-0002-7261-746X
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. Mid Sweden University Sundsvall 85170 Sweden.ORCID iD: 0000-0002-5010-5391
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.ORCID iD: 0000-0002-0236-5420
Show others and affiliations
2023 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 15, no 31, p. 13037-13048Article in journal (Refereed) Published
Abstract [en]

Graphene oxide (GO) was used in this study as a template to successfully synthesize silicon oxide (SiOx) based 2D-nanomaterials, adapting the same morphological features as the GO sheets. By performing a controlled condensation reaction using low concentrations of GO (<0.5 wt%), the study shows how to obtain 2D-nanoflakes, consisting of GO-flakes coated with a silica precursor that were ca. 500 nm in lateral diameter and ca. 1.5 nm in thickness. XPS revealed that the silanes had linked covalently with the GO sheets at the expense of the oxygen groups present on the GO surface. The GO template was shown to be fully removable through thermal treatment without affecting the nanoflake morphology of the pure SiOx-material, providing a methodology for large-scale preparation of SiOx-based 2D nanosheets with nearly identical dimensions as the GO template. The formation of SiOx sheets using a GO template was investigated for two different silane precursors, (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS), showing that both precursors were capable of accurately templating the graphene oxide template. Molecular modeling revealed that the choice of silane affected the number of layers coated on the GO sheets. Furthermore, rheological measurements showed that the relative viscosity was significantly affected by the specific surface area of the synthesized particles. The protocol used showed the ability to synthesize these types of nanoparticles using a common aqueous alcohol solvent, and yield larger amounts (∼1 g) of SiOx-sheets than what has been previously reported.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC) , 2023. Vol. 15, no 31, p. 13037-13048
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-338513DOI: 10.1039/d3nr01048aISI: 001033054400001PubMedID: 37492887Scopus ID: 2-s2.0-85167336014OAI: oai:DiVA.org:kth-338513DiVA, id: diva2:1811878
Note

QC 20231114

Available from: 2023-11-14 Created: 2023-11-14 Last updated: 2024-09-09Bibliographically approved
In thesis
1. Flexible hybrid organic/inorganic SiOx aerogels via in situ template condensation
Open this publication in new window or tab >>Flexible hybrid organic/inorganic SiOx aerogels via in situ template condensation
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Modern insulation materials such as mineral wool are common but have known health risks. Cellulose-based insulation is an improvement regarding health but is flammable by itself and can settle. Aerogels are an attractive insulation material due to their incredible insulation while also very light, they are made from an abundant non-toxic material (silicon oxide). Several challenges need to be overcome to be viable for common use. Critical point drying is often used which is slow and has a high risk of failure. Further aerogels are brittle where even small deformations result in breaking, limiting their use.This work focused on using graphene oxide, mycelium, or cellulose as organic templates to make organic/inorganic hybrid aerogels by controlled silane condensation.Using graphene oxide (GO) showed that both APTES and TEOS were able to form uniform, smooth silane layers on an organic GO template. It was also possible to remove the GO template without changing the formed silicon oxide material using high temperature. With similar developed condensation conditions, it was possible to form SiOx coatings on bacterial cellulose nanofibrils (bCNF), the choice of silane allowed control over the formed coating morphology, and the modified bCNF dispersion could be freeze-dried into aerogels. To explore the developed coating methodology, another promising insulation material (mycelium) was used as a template. The mimicking of the mycelium hyphae was shown possible, enabling silicon oxide nanofibers after the removal of the mycelium template. Lastly, sol-gel formed organic/inorganic aerogels were developed, using bCNF as a toughening matrix, enabling high flexibility without crack formation or shattering even after significant deformation. The aerogels were thermally stable, flexibile, and avoided critical point drying allowing for large-scale aerogel production.

Abstract [sv]

Moderna isoleringsmaterial som mineralull är vanliga men har kända hälsorisker. Cellulosabaserad isolering är ett hälsomässigt bättre alternativ, men är ofta brandfarlig och kan sjunka ihop. Aerogeler är ett attraktivt isoleringsmaterial för deras höga isoleringsförmåga och låg vikt. Dessutom är de basserade på (kiseloxid) som är vanlig och icke-toxiskt. Aerogeler har flera utmaningar före de kan övervägas för kommersielt bruk. Kritisk punkt-torkning används ofta, vilket är en långsam process med hög risk för misslyckande. Dessutom är Aerogeler sköra, och även låg deformering kan leda till att materialet går sönder, vilket begränsar deras användning.Detta arbete fokuserade på att använda grafenoxid, mycel eller cellulosa som organiska mallar för att skapa organiska/inorganiska hybrid-aerogeler genom kontrollerad silankondensation. Användning av grafenoxid (GO) visade att både APTES och TEOS kunde bilda jämna, släta silanlager på en organisk GO-mall. Det var också möjligt att ta bort GO-mallen utan att ändra det bildade kiseloxidmaterialet med hjälp av hög temperatur. Med liknande kondensationsförhållanden var det möjligt att bilda SiOx-beläggningar på bakteriella cellulosa-nanofibriller (bCNF). Valet av silan tillät kontroll över den bildade beläggningens morfologi, och den modifierade bCNF-dispersionen kunde frystorkas till aerogeler. För att ytterligare utforska den utvecklade beläggningsmetoden användes ett annat lovande isoleringsmaterial (mycel) som mall. Det visade sig möjligt att efterlikna mycelhyferna, vilket möjliggjorde framställning av kiseloxid-nanofibrer efter avlägsnande av mycelmallen.Slutligen utvecklades sol-gelbildade organiska/oinorganiska aerogeler genom att använda bCNF som en försegningsmatris, vilket möjliggjorde hög flexibilitet utan sprickbildning eller sönderfall även efter hög deformering. Aerogelerna var termiskt stabila, flexibla och kunde undvika kritisk punkt-torkning, vilket öppnar upp för storskalig produktion av aerogeler.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 81
Series
TRITA-CBH-FOU ; 2024:33
Keywords
Insulation, aerogel, organic templates, organic/inorganic hybrid materials, mimicking, sol-gel, freeze-drying, silane, silicon oxide, superhydrophobicity, nanoparticles., Isolering, aerogel, organiska mallar, imitation, organisk/inorganisk hybrid material, sol-gel, frystorkning, silan, kiseloxid, superhydrofobicitet, nanopartiklar.
National Category
Materials Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-352793 (URN)978-91-8106-030-0 (ISBN)
Public defence
2024-10-03, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2019-05650
Note

QC 20240910

Embargo t.o.m. 2025-10-03 godkänt av skolchef Amelie Eriksson Karlström via e-post 

Available from: 2024-09-10 Created: 2024-09-09 Last updated: 2024-09-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Birdsong, Björn K.Hoogendoorn, Billy W.Nilsson, FritjofAndersson, Richard L.Capezza, Antonio JoseHedenqvist, Mikael S.Olsson, Richard

Search in DiVA

By author/editor
Birdsong, Björn K.Hoogendoorn, Billy W.Nilsson, FritjofAndersson, Richard L.Capezza, Antonio JoseHedenqvist, Mikael S.Olsson, Richard
By organisation
Polymeric Materials
In the same journal
Nanoscale
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 153 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf