kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Development and characterization of a recombinant silk network for 3D culture of immortalized and fresh tumor-derived breast cancer cells
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.ORCID iD: 0000-0002-2332-4599
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.ORCID iD: 0009-0008-6607-9934
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
Show others and affiliations
2023 (English)In: Bioengineering and Translational Medicine, E-ISSN 2380-6761, Vol. 8, no 5, article id e10537Article in journal (Refereed) Published
Abstract [en]

Traditional cancer models rely on 2D cell cultures or 3D spheroids, which fail to recapitulate cell-extracellular matrix (ECM) interactions, a key element of tumor development. Existing hydrogel-based 3D alternatives lack mechanical support for cell growth and often suffer from low reproducibility. Here we report a novel strategy to make 3D models of breast cancer using a tissue-like, well-defined network environment based on recombinant spider silk, functionalized with a cell adhesion motif from fibronectin (FN-silk). With this approach, the canonical cancer cells SK-BR-3, MCF-7, and MDA-MB-231, maintain their characteristic expression of markers (i.e., ERα, HER2, and PGR) while developing distinct morphology. Transcriptomic analyses demonstrate how culture in the FN-silk networks modulates the biological processes of cell adhesion and migration while affecting physiological events involved in malignancy, such as inflammation, remodeling of the ECM, and resistance to anticancer drugs. Finally, we show that integration in FN-silk networks promotes the viability of cells obtained from the superficial scraping of patients' breast tumors.

Place, publisher, year, edition, pages
Wiley , 2023. Vol. 8, no 5, article id e10537
Keywords [en]
3D model, breast cancer, FN-silk network, MCF-7, MDA-MB-231, RNA-seq, SK-BR-3
National Category
Cell and Molecular Biology Cancer and Oncology
Research subject
Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-338455DOI: 10.1002/btm2.10537ISI: 000986541500001PubMedID: 37693069Scopus ID: 2-s2.0-85159103068OAI: oai:DiVA.org:kth-338455DiVA, id: diva2:1812579
Note

QC 20231116

Available from: 2023-11-16 Created: 2023-11-16 Last updated: 2024-08-30Bibliographically approved
In thesis
1. Advancing 3D Cell Cultures of Stem-Cell Derived Pancreatic Islets and Breast Cancer Cells Using Recombinant Functionalized Spider Silk: Insights into cellular composition using bioinformatic methods
Open this publication in new window or tab >>Advancing 3D Cell Cultures of Stem-Cell Derived Pancreatic Islets and Breast Cancer Cells Using Recombinant Functionalized Spider Silk: Insights into cellular composition using bioinformatic methods
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The culture of cells in 3D creates a more physiologically relevant cell environment than conventional 2D cultures. Interactions of cells with the extracellular matrix induce important cellular signalling that regulates cell adhesion, migration, proliferation, differentiation, and survival. This is crucial for modelling cell development and disease. This thesis aims to develop and analyse improved 3D cell culture methods for stem cell-derived pancreatic islets (SC-islets) and breast cancer cell lines using a functionalized recombinant spider silk. Spider silk is a natural protein-based material with remarkable mechanical properties of high strength and elasticity. It is also biodegradable and cytocompatible. FN-silk, the recombinant spider silk protein utilized in this thesis, is functionalized with a cell binding motif (RGD) from fibronectin, to improve cell adhesion. Notably, FN-silk self-assembles at the liquid-air interface into a fibrillar structure, making it favourable as support for cell culture. In this thesis, bioinformatic methods were used to discover how the FN-silk supported environment affects the gene expression of cells and the cellular heterogeneity of SC-islets during a differentiation process. Additionally, bioinformatical analysis of the effect of 3D cell culture of breast cancer cell lines in FN-silk networks was performed. The first part of the thesis addresses serval challenges in pancreatic islet transplantation, by presenting an optimized protocol for pancreatic differentiation from human pluripotent stem cells, improving in vitro cultivation, and developing a cryopreservation method for SC-islets. The differentiation protocol presented in Paper 1 resulted in pure endocrine cell populations, avoiding unwanted proliferating and non-endocrine cells. It was also demonstrated that these SC-islets matured in vivo, and could effectively reverse diabetes in a diabetic mouse model. Single-cell RNA sequencing analysis provided new insights into the cellular composition and gene expression of the SC-islets before and after transplantation. In Paper 2, an innovative method for 3D in vitro cultivation of SC-islets using FN-silk networks mimicking the extracellular matrix was established. The FN-silk networks provided structural support for in vitro cultivation and handling during in vivo transplantation. The viability and functionality of free and FN-silk incorporated SC-islets were evaluated and compared. Single-cell RNA sequencing analyses confirmed maintenance of cellular composition, with a slightly improved beta cell maturation for SC-islets supported by FN-silk. In Paper 3, a novel strategy for cryopreservation of SC-islets was explored. The twisted vitrification method, previously employed for 2D cultures, was adapted for 3D cultures by utilizing integration into FN-silk networks to facilitate handling during the vitrification process. The second part of the thesis aimed to develop a method for 3D culture of breast cancer cells to better replicate the complexity of the tumour microenvironment. In Paper 4, FN-silk networks were used to generate a 3D environment for breast cancer cells where crucial cell-ECM interactions can be established. Proliferation rates and key marker expression of the cells cultured in 2D versus in the FN-silk network environment were investigated. Bioinformatic analysis of bulk RNA sequencing data was used to compare breast cancer cells in conventional 2D cell cultures with those cultured in 3D with the support of FNsilk. In conclusion, the work conducted in this thesis presents significant advancements in the development and analyses of 3D cell cultures of both SCislets and breast cancer cell lines, potentially enhancing therapeutic applications, disease modeling, and drug testing.

Abstract [sv]

Odling av celler i 3D skapar en mer fysiologiskt relevant cellmiljö än konventionella 2D-kulturer. Interaktioner mellan celler och den extracellulära matrisen inducerar viktiga cellsignaler som reglerar celladhesion, migration, proliferation, differentiering och överlevnad. Denna avhandling syftar till att utveckla och analysera förbättrade 3D-cellodlingsmetoder för stamcellsderiverade pankreatiska öar (SC-islets) och bröstcancerceller, med hjälp av funktionaliserat rekombinant spindelsilke. Spindelsilke är ett naturligt proteinbaserat material med anmärkningsvärda mekaniska egenskaper som hög styrka och elasticitet. Det är också biologiskt nedbrytbart och cellkompatibelt. FN-silk, det rekombinanta spindelsilkesprotein som används i denna avhandling, är funktionaliserat med ett cellbindande motiv (RGD) från fibronektin, för att förbättra celladhesion. Anmärkningsvärt är att det går samman vid vätska-luft-gränsytan till en fibrillär struktur, vilket gör det gynnsamt som stöd för cellodling. I denna avhandling användes bioinformatiska metoder för att studera hur 3D-miljön påverkar cellernas genuttryck och den cellulära heterogeniteten i pankreatiska aggregat under en differentieringsprocess. Dessutom utfördes en bioinformatisk analys av effekten av 3D-cellodling av bröstcancercellinjer i FN-silknätverk. Den första delen av avhandlingen tar upp flera utmaningar vid transplantation av pankreatiska öar genom att presentera ett optimerat protokoll för pankreasdifferentiering från humana pluripotenta stamceller, förbättra in vitro-odling av dessa, samt utveckla en kryokonserveringsmetod för SC-islets. Differentieringsprotokollet som presenteras i Paper 1 resulterade i rena endokrina cellpopulationer och undviker oönskade prolifererande och icke-endokrina celler. Det visades också att dessa SC-islets mognade in vivo och kunde effektivt motverka diabetes i en diabetisk musmodell. Singel cell-RNA-sekvenseringsanalys gav nya insikter om den cellulära sammansättningen och genuttrycket hos SC-islets före och efter transplantation. I Paper 2 etablerades en innovativ metod för 3D-odling av SC-islets med hjälp av FN-silkesnätverk som imiterar den extracellulära matrisen. FN-silkesnätverken gav strukturellt stöd för in vitro-odling och hantering under in vivo-transplantation. Viabilitet och funktionalitet hos fria och FN-silkes inkorporerade SC-islets utvärderades och jämfördes. Singel cell-RNA-sekvenseringsanalyser bekräftade bibehållandet av cellernas sammansättning, med en något förbättrad mognad av beta-celler i SC-islets som stöddes av FN-silke. I Paper 3 utforskades en ny strategi för kryokonservering av SC-islets. Twisted vitrification-metoden, som tidigare använts för 2D-kulturer, anpassades för 3D-kulturer genom att använda integrering i FN-silkesnätverk för att underlätta hanteringen under vitrifieringsprocessen. Den andra delen av avhandlingen syftade till att utveckla en metod för 3D-odling av bröstcancerceller för att bättre efterlikna komplexiteten i tumörmikromiljön. I Paper 4 användes FN-silkesnätverk för att skapa en 3D-miljö för bröstcancerceller där viktiga cell-ECM-interaktioner kan etableras. Proliferationshastigheter och uttryck av nyckelmarkörer hos cellerna odlade i 2D jämfört med i FN-silkesnätverk undersöktes. Bioinformatisk analys av bulk-RNA-sekvenseringsdata användes för att jämföra bröstcancerceller i konventionella 2D-cellkulturer med de odlade i 3D med stöd av FN-silk. Sammanfattningsvis presenterar arbetet som utförts i denna avhandling betydande framsteg inom utveckling och analys av 3D-cellkulturer av både SC-islets och bröstcancerceller, vilket potentiellt kan förbättra terapeutiska tillämpningar, sjukdomsmodellering och läkemedelstester.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 106
Series
TRITA-CBH-FOU ; 2024:28
Keywords
3D cell culture, recombinant functionalised spider silk, FN-silk, stem-cell derived pancreatic islets, pancreatic islet transplantation, vitrification, breast cancer cell lines, single-cell transcriptome analysis, bulk transcriptome analysis, 3D-cellodling, rekombinant funktionaliserat spindelsilke, FN-silk, stamcellsderiverade pankreatiska öar, transplantation av pankreatiska öar, vitrifiering, bröstcancerceller, singel cell-transkriptomanalys, bulk-transkriptomanalys
National Category
Endocrinology and Diabetes Biomaterials Science Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-352221 (URN)978-91-8106-018-8 (ISBN)
Public defence
2024-09-26, FD5, AlbaNova, Roslagstullsbacken 21, via Zoom: https://kth-se.zoom.us/j/66345646108, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 2024-08-30

Available from: 2024-08-30 Created: 2024-08-30 Last updated: 2024-09-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Collodet, CaterinaGkouma, SavviniStåhl, EmmyHedhammar, My

Search in DiVA

By author/editor
Collodet, CaterinaBlust, KellyGkouma, SavviniStåhl, EmmyChen, XinsongHartman, JohanHedhammar, My
By organisation
Protein Technology
Cell and Molecular BiologyCancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 121 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf