kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Design an emotionally positive experience via sentiment classification for social media recommendation systems: A case study in TikTok
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Skapa en emotionellt positiv upplevelse genom sentimentklassificering för rekommendationssystem för sociala medier : En fallstudie i TikTok (Swedish)
Abstract [en]

Recommendation system benefits social media by attracting users with the posts they prefer. The recommended posts, however, may not align with what users really need to browse, especially in terms of emotion. Thus we conducted a case study in TikTok, in order to understand the emotional impact of social application’s post feed and to explore the interactive solution. The state-of-arts were reviewed, on the topics of psychology issues caused by social media, related therapy and product solutions. To empathise with users’ situation, a workshop was performed, consisting of a card game, presentation and participatory design. Then an emotion reminder, built on a Naive Bayesian text classifier and a facial expression SVM, was prototyped. With an accuracy of 0.51 (text) and 0.69 (facial expression) in sentiment classification, the emotion reminder was then tested by the users. It was discovered that users had higher emotion awareness, higher sense of control over the browsing and lower engagement in the interface with the prototype, compared with the original TikTok interface. And this was aligned with their needs described in the workshop. Users preferred the prototype’s content-based emotion detection than the detection based on their biological data in terms of privacy, and embraced the format of the reminder, instead of auto-filter, as an emotionally positive experience was not just browsing the posts with positive feelings, but receiving negative posts as well.

Abstract [sv]

Rekommendationssystem gynnar sociala medier genom att locka användare med de inlägg de föredrar. De rekommenderade inläggen kan dock inte alltid överensstämma med det användarna verkligen behöver bläddra igenom, särskilt när det gäller känslor. Därför genomförde vi en fallstudie på TikTok för att förstå den emotionella påverkan av sociala applikationers inläggflöde och för att utforska interaktiva lösningar. Den senaste forskningen inom området granskades med fokus på psykologiska problem orsakade av sociala medier, relaterad terapi och produktlösningar. För att sätta oss in i användarnas situation genomfördes en workshop med ett kortspel, presentation och deltagande design. Därefter skapades en känslomässig påminnelse, baserad på en Naive Bayes-textklassificerare och en SVM för ansiktsuttryck. Med en noggrannhet på 0,51 (text) och 0,69 (ansiktsuttryck) i känslolägesklassificering testades sedan känslominnaren av användarna. Det visade sig att användarna hade ökad medvetenhet om sina känslor, ökad känsla av kontroll över bläddrandet och lägre engagemang i gränssnittet med prototypen jämfört med det ursprungliga TikTok-gränssnittet. Detta stämde överens med deras behov som beskrevs under workshopen. Användarna föredrog prototypens innehållsbaserade känslodetektion jämfört med detektering baserad på deras biologiska data av integritetsskäl och omfamnade formatet på påminnelsen istället för automatisk filtrering. En emotionellt positiv upplevelse handlade inte bara om att bläddra bland inlägg med positiva känslor, utan även att ta emot negativa inlägg.

Place, publisher, year, edition, pages
2023. , p. 26
Series
TRITA-EECS-EX ; 2023:739
Keywords [en]
recommendation system, social application, sentiment classification, emotions, UX
Keywords [sv]
rekommendationssystem, social tillämpning, känslolägesklassificering, känslor, UX
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-340021OAI: oai:DiVA.org:kth-340021DiVA, id: diva2:1814509
Supervisors
Examiners
Available from: 2023-11-30 Created: 2023-11-24 Last updated: 2023-11-30Bibliographically approved

Open Access in DiVA

fulltext(68681 kB)415 downloads
File information
File name FULLTEXT01.pdfFile size 68681 kBChecksum SHA-512
4343be6603b2e260898cbf7b744b212d2baf14ef9f46e11da3dc712df26c4af9e69ce785bc47feee305bdb681502a12d3cf8bd34e05a549ab781dce76ceaa2a2
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 415 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 699 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf