kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Femtosecond Laser Microfabrication of Glasses and 2D Materials for Photonics and Energy Storage
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Femtosecond laser-based fabrication technologies have seen rapid developments in the past decades, thanks to the capability of femtosecond lasers to induce localized multiphoton absorption in materials. Multiphoton absorption can result in various material modifications that can be leveraged for additive and subtractive manufacturing. Their versatile applications have demonstrated the great potential of femtosecond lasers in advancing micro- and nano-fabrication. These include (1) multiphoton crosslinking enabling 3D printing with unprecedented patterning freedom and sub-micrometer resolution,(2) the formation of self-organized structures enabling the creation of multi-functional sub-wavelength patterns in solid materials, and (3) multiphoton ablation enabling precise sculpturing of wide-ranging materials. Nevertheless, there remains a large room to explore when it comes to available materials and achievable devices. This thesis aims to advance the applications of femtosecond lasers to glasses and 2D materials for the fabrication of advanced and integrated microdevices for photonics and energy storage. The first part of this thesis presents two approaches for 3D printing of inorganic glass. These approaches are based on two unusual observations in hydrogen silsesquioxane (HSQ) upon femtosecond laser exposure: (1) multiphoton crosslinking and (2) the formation of self-organized structures. The first work reports an approach for 3D printing of solid silica glass with sub-micrometer resolution by multiphoton crosslinking of HSQ. In contrast to the alternative methods, our approach does not require any thermal treatments, which offers desirable design fidelity and integration flexibility. The second work reports the possibility of inducing material modifications (1) and (2) in HSQ simultaneously. This possibility enables additive manufacturing of self-organized nanogratings, and thus, 3D printing of hierarchical structures made of Si-rich glass. In the third work, a protocol to perform the 3D printing on optical fiber tips is developed, which enables the fabrication of fiber-tip optical microdevices for sensing and beam shaping. The second part of this thesis presents the application of femtosecond lasers to fabricating on-paper microsupercapacitors (MSCs).MSCs are promising energy-storage microdevices for self-powering electronics, and paper substrates, yet vulnerable, are attractive for their sustainability and flexibility. The material and shape of MSCelectrodes play a crucial role in the energy-storage performance, and 2D materials have emerged as suitable candidate materials. In the last two works, a scalable approach for the precise micromachining of 2D-material electrodes by multiphoton ablation is developed, preserving their electrochemical performance and the integrity of the paper substrates.

Abstract [sv]

Femtosekundlaser-baserade tillverkningsteknologier har genomgått snabb utveckling de senaste årtiondena tack vare femtosekundlasrars förmåga att inducera lokal multifotonabsorption i material. Multifotonabsorption kan resultera i olika typer av materialförändringar som kan utnyttjas för additiv och subtraktiv tillverkning. De mångsidiga tillämpningarna visar på potentialen av femtosekundslasrar för mikro- och nanotillverkning. Dessa inkluderar (1) multifotonkorslänkning för 3D-utskrift med mönsterfrihet och submikrometerupplösning, (2) bildandet av självorganiserade strukturer för multifunktionella subvåglängdsmönster i fasta material och (3) multifotonablation för precisionsformning av flertalet material. Trots detta finns det utrymme för att utforska möjliga material och realiserbara produkter. Denna avhandling syftar till att utöka användningsområdet för femtosekundlasrar till tillverkning av avancerade komponenter utav såväl glas som 2D material, för användning inom fotonik och energilagring. Den första delen av denna avhandling presenterar två tillvägagångssätt för 3D-utskrift av oorganiskt glas. Dessa baseras på materialmodifieringar i vätesilseskvioxan (HSQ) vid exponering för femtosekundslaserstrålning: (1) multifoton-korslänkning och (2) bildandet av självorganiserade strukturer. Det första arbetet redovisar kring 3D-utskrift av fast kiseldioxidglas med submikrometerupplösning genom multifoton-korslänkning av HSQ. Vår metod kräver ingen termisk behandling, vilket ger leder till god överensstämmelse mellan ritning och produkt och ger flexibilitet kring integration. Det andra arbetet redogör för möjligheten att inducera materialmodifieringarna (1) och (2) i HSQ samtidigt, vilket möjliggör additiv tillverkning av självorganiserade nanogitter och 3D-utskrift av hierarkiska strukturer av kiselrikt glas. Det tredje arbetet är en utveckling av ett protokoll för 3D-utskrift på ändarna av optiska fiberkablar för tillverkning av optiska mikroenheter som sensorer och strålformare. Den andra delen av denna avhandling presenterar användningen av femtosekundslasrar för tillverkning av mikrosuperkondensatorer (MSCs) på papper. MSCs har fått stor uppmärksamhet som lovande energilagringsmikroenheter för självdriven elektronik. Papperssubstrat är även attraktiva för sin hållbarhet och flexibilitet. 2D-material har relevanta elektrokemiska egenskaper för MSC-elektroder och elektrodernas form påverkar deras prestanda. I de två sista arbetena utvecklas en metod för mikromaskintillverkning av elektroder utav 2D-material genom multifotonablation, vilket bevarar deras elektrokemiska prestanda och de fysiska egenskaperna av papperssubstraten.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 81
Series
TRITA-EECS-AVL ; 2023:84
Keywords [en]
Femtosecond laser, 3D printing, self-organized nanogratings, micromachining, silica glass, silicon-rich glass, hydrogen silsesquioxane, photonic microdevice, microsupercapacitor, 2D materials, direct ink writing
National Category
Materials Engineering Manufacturing, Surface and Joining Technology
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-339862ISBN: 978-91-8040-767-0 (print)OAI: oai:DiVA.org:kth-339862DiVA, id: diva2:1814588
Public defence
2023-12-18, F3, Lindstedtsvägen 26, Stokcholm, 09:30 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, GMT14-0071Swedish Foundation for Strategic Research, STP19-0014EU, Horizon 2020, 825272
Note

QC 20231127

Available from: 2023-11-27 Created: 2023-11-25 Last updated: 2023-12-05Bibliographically approved
List of papers
1. Three-dimensional printing of silica glass with sub-micrometer resolution
Open this publication in new window or tab >>Three-dimensional printing of silica glass with sub-micrometer resolution
Show others...
2023 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 14, no 1, article id 3305Article in journal (Refereed) Published
Abstract [en]

Silica glass is a high-performance material used in many applications such as lenses, glassware, and fibers. However, modern additive manufacturing of micro-scale silica glass structures requires sintering of 3D-printed silica-nanoparticle-loaded composites at similar to 1200 degrees C, which causes substantial structural shrinkage and limits the choice of substrate materials. Here, 3D printing of solid silica glass with sub-micrometer resolution is demonstrated without the need of a sintering step. This is achieved by locally crosslinking hydrogen silsesquioxane to silica glass using nonlinear absorption of sub-picosecond laser pulses. The as-printed glass is optically transparent but shows a high ratio of 4-membered silicon-oxygen rings and photoluminescence. Optional annealing at 900 degrees C makes the glass indistinguishable from fused silica. The utility of the approach is demonstrated by 3D printing an optical microtoroid resonator, a luminescence source, and a suspended plate on an optical-fiber tip. This approach enables promising applications in fields such as photonics, medicine, and quantum-optics.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-330534 (URN)10.1038/s41467-023-38996-3 (DOI)001002780300001 ()37280208 (PubMedID)2-s2.0-85161049960 (Scopus ID)
Note

QC 20230630

Available from: 2023-06-30 Created: 2023-06-30 Last updated: 2023-11-25Bibliographically approved
2. Multiphoton lithography featuring self-forming nanogratings for 3D printing of hierarchical glass structures
Open this publication in new window or tab >>Multiphoton lithography featuring self-forming nanogratings for 3D printing of hierarchical glass structures
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Other Materials Engineering
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-339841 (URN)
Note

QC 20231122

Available from: 2023-11-21 Created: 2023-11-21 Last updated: 2023-11-25Bibliographically approved
3. 3D printing of glass micro-optics with subwavelength features on optical fiber tips
Open this publication in new window or tab >>3D printing of glass micro-optics with subwavelength features on optical fiber tips
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Manufacturing, Surface and Joining Technology
Identifiers
urn:nbn:se:kth:diva-339845 (URN)
Note

Not duplicate with DiVA 1813559 which is the published article

QC 20231122

Available from: 2023-11-21 Created: 2023-11-21 Last updated: 2024-04-25Bibliographically approved
4. High‐rate metal‐free MXene microsupercapacitors on paper substrates
Open this publication in new window or tab >>High‐rate metal‐free MXene microsupercapacitors on paper substrates
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-339846 (URN)
Note

QC 20231122

Available from: 2023-11-21 Created: 2023-11-21 Last updated: 2024-05-03Bibliographically approved
5. Ultrafast metal-free microsupercapacitor arrays directly store instantaneous high-voltage electricity from mechanical energy harvesters
Open this publication in new window or tab >>Ultrafast metal-free microsupercapacitor arrays directly store instantaneous high-voltage electricity from mechanical energy harvesters
Show others...
2024 (English)In: Advanced Science, E-ISSN 2198-3844, Vol. 11, no 22Article in journal (Refereed) Published
Abstract [en]

Harvesting renewable mechanical energy is envisioned as a promising and sustainable way for power generation. Many recent mechanical energy harvesters are able to produce instantaneous (pulsed) electricity with a high peak voltage of over 100 V. However, directly storing such irregular high-voltage pulse electricity remains a great challenge. The use of extra power management components can boost storage efficiency but increase system complexity. Here utilizing the conducting polymer PEDOT:PSS, high-rate metal-free micro-supercapacitor (MSC) arrays are successfully fabricated for direct high-efficiency storage of high-voltage pulse electricity. Within an area of 2.4 × 3.4 cm2 on various paper substrates, large-scale MSC arrays (comprising up to 100 cells) can be printed to deliver a working voltage window of 160 V at an ultrahigh scan rate up to 30 V s−1. The ultrahigh rate capability enables the MSC arrays to quickly capture and efficiently store the high-voltage (≈150 V) pulse electricity produced by a droplet-based electricity generator at a high efficiency of 62%, significantly higher than that (<2%) of the batteries or capacitors demonstrated in the literature. Moreover, the compact and metal-free features make these MSC arrays excellent candidates for sustainable high-performance energy storage in self-charging power systems.

Place, publisher, year, edition, pages
Wiley, 2024
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-339847 (URN)10.1002/advs.202400697 (DOI)001187293000001 ()38502870 (PubMedID)2-s2.0-85188068556 (Scopus ID)
Note

QC 20231122

Available from: 2023-11-21 Created: 2023-11-21 Last updated: 2024-07-01Bibliographically approved

Open Access in DiVA

Summary(27273 kB)519 downloads
File information
File name FULLTEXT01.pdfFile size 27273 kBChecksum SHA-512
fa5df5be42fd8be639a8a712b338e3ad36d8ecfe2166f37d03f4252c16cf377a3f1bd2aeb9125ecba52648f1bb34e3589b8d215cea3ea87d141efe1749851d95
Type summaryMimetype application/pdf
Errata(309 kB)55 downloads
File information
File name ERRATA01.pdfFile size 309 kBChecksum SHA-512
7d9dcab135806b3808f397d5911c471eb9052d45d63d7f1365853503a7faf3742bc4de1133a336a530935aafa293dff6318a64a4c4cd1fc9fdc9f6178fbef3c5
Type errataMimetype application/pdf

Authority records

Huang, Po-Han

Search in DiVA

By author/editor
Huang, Po-Han
By organisation
Micro and Nanosystems
Materials EngineeringManufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1935 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf