kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chitosan-photocatalyst nanocomposite on polyethylene films as antimicrobial coating for food packaging
KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.ORCID iD: 0000-0002-5891-0053
Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam 783370, India, Assam.
KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
Show others and affiliations
2024 (English)In: Progress in organic coatings, ISSN 0300-9440, E-ISSN 1873-331X, Vol. 186, article id 108069Article in journal (Refereed) Published
Abstract [en]

Chitosan (CS), an edible and non-toxic natural biopolymer, has been widely used in food preservation attributed to its intrinsic antimicrobial, biodegradable, and excellent film-forming properties. In this work, we report photocatalyst-loaded chitosan coating on commercial polyethylene (PE) film with enhanced antimicrobial properties for food packaging application. To improve the chemical stability of zinc oxide (ZnO) photocatalyst in acidic chitosan matrix, a thin layer (1–5 nm) of amorphous tin oxide (SnOx) was coated on ZnO nanoparticles. Consequently, the charge transfer efficiency of ZnO is improved and most of the surface defects are retained according to the studies of UV–Vis and fluorescence spectroscopy. The thin SnOx coating on ZnO was observed by high-resolution transmission electron microscopy (HRTEM) and its effects on crystallinity and particle size of ZnO were examined using X-ray diffraction (XRD) and particle sizer, respectively. The addition of ZnO@SnOx particles in chitosan coating increases water contact angle (WCA) and enhances thermal stability of chitosan coating. The antimicrobial activity of chitosan, ZnO-SnOx nanoparticles, and CS-ZnO@SnOx coated PE films were examined against both Gram-negative (E. coli, A. faecalis) and Gram-positive (S. aureus, B. subtilis) bacteria. Compared to the limited antimicrobial effects of chitosan, ZnO-SnOx demonstrates an improved inhibition effect on bacterial growth over 48 h period under light. For the CS-ZnO@SnOx nanocomposite coated PE films, no inhibition zone was observed due to the limitation of disc diffusion method. Meanwhile, there were no bacterial colonies found to develop on the film, rendering this CS nanocomposite coating a good candidate for food packaging applications.

Place, publisher, year, edition, pages
Elsevier BV , 2024. Vol. 186, article id 108069
Keywords [en]
Antimicrobial, Chitosan, Coating, Food packaging, Photocatalyst
National Category
Polymer Technologies
Identifiers
URN: urn:nbn:se:kth:diva-340108DOI: 10.1016/j.porgcoat.2023.108069ISI: 001112676900001Scopus ID: 2-s2.0-85176446273OAI: oai:DiVA.org:kth-340108DiVA, id: diva2:1815369
Note

QC 20231128

Available from: 2023-11-28 Created: 2023-11-28 Last updated: 2025-02-14Bibliographically approved
In thesis
1. Chitosan-based sustainable coatings for multifunctional applications
Open this publication in new window or tab >>Chitosan-based sustainable coatings for multifunctional applications
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Marine resources play a crucial role in supporting the blue economy and addressing global challenges to achieve some of the UN’s Sustainable Development Goals (SDGs). However, the marine ecosystem is adversely affected by plastic pollution, biofouling, and corrosion; thus, there is an urgent need for sustainable solutions. Chitosan, derived from chitin, the second most abundant biopolymer on Earth after cellulose, offers promising potential due to its unique biodegradable, water-soluble, antimicrobial, and film-forming properties. This thesis summarizes the sustainable extraction of chitosan, chemical modification of chitosan derivatives, and the application of chitosan coatings for antimicrobial, UV-filtering, corrosion prevention, and marine antifouling. In the first part of the thesis, extraction of chitosan from food waste was carried out using green solvents as a sustainable solution for circular economy. Further, the antimicrobial activity of chitosan was enhanced by developing nanocomposites with core-shell ZnO@SnOx particles, which demonstrated a significant potential in food packaging application. To achieve even greater antimicrobial efficacy and UV-blocking capabilities, chitosan was chemically grafted with benzophenone-3 (BP-3), a plant extract known for its UV filtering properties. The antimicrobial activity of the obtained chitosan-BP-3 coatings was evaluated against both Gram-negative and Gram-positive bacteria, and the hydroxyl group on benzophenone-3 is found playing a crucial role in the antimicrobial effectiveness. Continuous irradiation tests showed that the coating possesses long-term UV-blocking effect. Biofouling is a process about the settlement of micro- and macro-organisms on any substance immersed in water, leading to significant economic losses due to increased drag, material degradation, and maintenance costs in marine and industrial applications. To address this challenge, polyethylene glycol (PEG)-grafted chitosan coatings with varied chain length of PEG were synthesized, aiming to reduce microbial and diatom adhesion. This was achieved by modulating the brush effect and hydrophilicity of the surface coatings. Moreover, ZnO-Ag nanoparticles embedded in the coating has shown playing a bactericidal role under light or in the dark. On the other hand, it is urgent to find alternatives to the prevalent but environmentally unfriendly epoxy resin in anticorrosive coatings and prevent the embedded anti-corrosion agents from discharging into water. Multifunctional chitosan coatings have emerged as a promising solution for marine corrosion prevention and antifouling applications. For the first time, corrosion inhibitor, 2-mercaptobenzotriazole (MBT), was chemically linked to chitosan. In addition, new anti-corrosion mechanism was proposed based on the chitosan-MBT coatings. The corrosion resistance of the chitosan-MBT coating was improved by 40 times compared with the chitosan and MBT mixture coating. This bifunctional chitosan-MBT coating had also exhibited superior antifouling effect against settlement of mussels for 48 h. The work presented in this thesis highlights the versatility and potential of chitosan as an emerging biomaterial for sustainable development in the fields of antimicrobial, food packaging, marine antifouling, and corrosion prevention.

Abstract [sv]

Marina resurser spelar en avgörande roll för att stödja den blå ekonomin och bidra till att uppnå flera av FN:s globala mål för hållbar utveckling (SDG). Samtidigt hotas marina ekosystemet av plastföroreningar, biofouling och korrosion. Detta skapar ett akut behov av hållbara lösningar. Kitosan, som utvinns från kitin – den näst vanligaste biopolymeren på jorden efter cellulosa – har stor potential. Detta beror på dess unika egenskaper, såsom biologisk nedbrytbarhet, vattenlöslighet, antimikrobiell aktivitet och förmåga att bilda skyddande filmer. Denna avhandling undersöker hållbar utvinning av kitosan, dess kemiska modifiering och dess tillämpningar inom antimikrobiella beläggningar, UV-filter, applikationer.

I avhandlingens första del utvanns kitosan från matavfall med hjälp av gröna lösningsmedel som en hållbar strategi för en cirkulär ekonomi. Vidare förbättrades kitosans antimikrobiella aktivitet genom att utveckla nanokompositer med kärn-skalsstruktur av ZnO@SnOx-partiklar, som visade betydande potential inom livsmedelsförpackningar. För att ytterligare förbättra den antimikrobiella effektiviteten och UV-blockerande egenskaper modifierades kitosan kemiskt med bensofenon-3 (BP-3), ett växtextrakt känt för sina UV-filteregenskaper. Den antimikrobiella aktiviteten hos de framställda kitosan-BP-3-beläggningarna testades mot både gramnegativa och grampositiva bakterier. Resultatet visade att hydroxylgruppen på bensofenon-3 spelade en avgörande roll för beläggningarnas antimikrobiella effekten. Kontinuerliga bestrålningstester visade dessutom att beläggningen bibehöll långvariga UV-blockerande egenskaper.

Biofouling är en process där mikro- och makroorganismer fäster sig  på material nedsänkta i vatten. Detta orsakar betydande ekonomiska förluster på grund av ökad friktion, materialnedbrytning och höga underhållskostnader inom marina och industriella tillämpningar. För att hantera detta problem syntetiserades kitosanbaserade beläggningar med polyetylenglykol (PEG) av varierande kedjelängd. Syftet var att minska vidhäftning av mikroorganismer och kiselalger. Detta uppnåddes genom att modulera borsteffekten och hydrofiliciteten hos ytan. Dessutom visade sig ZnO-Ag-nanopartiklar, inbäddade i beläggningen, ha bakteriedödande egenskaper både i ljus och mörker.

Det är samtidigt brådskande att hitta alternativ till de utbredda men miljöovänliga epoxihartser som används i korrosionsskyddande beläggningar. Det är också viktigt att förhindra att de inbäddade korrosionsskyddsmedlen släpps ut i vattnet. Multifunktionella kitosanbeläggningar har framträtt som en lovande lösning för att förebygga marin korrosion och biofouling. För första gången har korrosionsinhibitorn 2-merkaptobenzotriazol (MBT) kemiskt bundits till kitosan. En ny mekanism för korrosionsskydd föreslogs också baserad på kitosan-MBT-beläggningar. Jämfört med en blandning av kitosan och MBT visade sig kitosan-MBT-beläggningen 40 gånger bättre korrosionsresistens.Denna tvåfunktionella kitosan-MBT-beläggning uppvisade dessutom överlägsna antifouling-egenskaper genom att förhindra musslors vidhäftning under 48 timmar.

Arbetet som presenteras i denna avhandling belyser mångsidigheten och potentialen hos kitosan som ett framväxande biomaterial. Dess tillämpningar omfattar områden som antimikrobiella tillämpningar, livsmedelsförpackningar, marin antifouling och korrosionsskydd. 

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. p. 64
Series
TRITA-SCI-FOU ; 2025:06
National Category
Textile, Rubber and Polymeric Materials
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-360015 (URN)978-91-8106-193-2 (ISBN)
Public defence
2025-03-07, FB52, Albanova, Roslagstullsbacken 21, 114 21 Stockholm, Sweden, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 2025-02-17

Available from: 2025-02-17 Created: 2025-02-14 Last updated: 2025-04-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Yu, DongkunLiu, YouZhang, XingyanFei, YeDutta, Joydeep

Search in DiVA

By author/editor
Yu, DongkunLiu, YouZhang, XingyanFei, YeDutta, Joydeep
By organisation
Materials and Nanophysics
In the same journal
Progress in organic coatings
Polymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 145 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf