kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Measurement of the Sensitivity of Two-Particle Correlations in pp Collisions to the Presence of Hard Scatterings
CNRS/IN2P3.
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0001-9415-7903
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0009-0004-1439-5151
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0003-3867-0336
Show others and affiliations
Number of Authors: 29302023 (English)In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 131, no 16, p. 162301-Article in journal (Refereed) Published
Abstract [en]

A key open question in the study of multiparticle production in high-energy pp collisions is the relationship between the "ridge"-i.e., the observed azimuthal correlations between particles in the underlying event that extend over all rapidities-and hard or semihard scattering processes. In particular, it is not known whether jets or their soft fragments are correlated with particles in the underlying event. To address this question, two-particle correlations are measured in pp collisions at sqrt[s]=13  TeV using data collected by the ATLAS experiment at the LHC, with an integrated luminosity of 15.8  pb^{-1}, in two different configurations. In the first case, charged particles associated with jets are excluded from the correlation analysis, while in the second case, correlations are measured between particles within jets and charged particles from the underlying event. Second-order flow coefficients, v_{2}, are presented as a function of event multiplicity and transverse momentum. These measurements show that excluding particles associated with jets does not affect the measured correlations. Moreover, particles associated with jets do not exhibit any significant azimuthal correlations with the underlying event, ruling out hard processes contributing to the ridge.

Place, publisher, year, edition, pages
American Physical Society (APS) , 2023. Vol. 131, no 16, p. 162301-
National Category
Subatomic Physics
Identifiers
URN: urn:nbn:se:kth:diva-340114DOI: 10.1103/PhysRevLett.131.162301ISI: 001102759000001PubMedID: 37925689Scopus ID: 2-s2.0-85184808103OAI: oai:DiVA.org:kth-340114DiVA, id: diva2:1815376
Note

QC 20231128

Available from: 2023-11-28 Created: 2023-11-28 Last updated: 2024-08-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Leopold, AlexanderLundberg, OlofLund-Jensen, BengtOhm, ChristianShaheen, RabiaStrandberg, Jonas

Search in DiVA

By author/editor
Leopold, AlexanderLundberg, OlofLund-Jensen, BengtOhm, ChristianShaheen, RabiaStrandberg, Jonas
By organisation
Particle and Astroparticle Physics
In the same journal
Physical Review Letters
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf