kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Outlier Robustness in Server-Assisted Collaborative SLAM: Evaluating Outlier Impact and Improving Robustness
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Robusthet mot outliers i serverassisterad, samarbetande SLAM : En utvärdering utav outliers påverkan och hur robustheten kan ökas (Swedish)
Abstract [en]

In order to be able to perform many tasks, autonomous devices need to understand their environment and know where they are in this environment. Simultaneous Localisation and Mapping (SLAM) is a solution to this problem. When several devices attempt to jointly solve this problem they use Collaborative SLAM (C-SLAM), but this is a very resource-demanding process. In order to enable resource-constrained devices, like small mobile robots or eXtended Reality (XR) devices, to run C-SLAM we look towards a Server-Assisted C-SLAM architecture to lift the computational burden from these devices. In a real-world scenario, sensors might fail, the devices might process sensor data wrongly or a malicious actor might inject wrong data into the system. In order for these solutions to be reliable, they must be able to deal with these outliers. This thesis looks into the impact of outliers in Server-Assisted C-SLAM algorithms and presents two novel solutions for a robust algorithm, based on robust estimation of the initial device poses. We show the novel solutions outperform the state of the art both in estimation accuracy, yielding better estimates of the real device trajectories, and computational performance, making it suitable for device-constrained devices.

Abstract [sv]

För att kunna utföra flertalet uppgifter måste autonoma enheter förstå sin miljö och veta var de befinner sig i den här miljön. Simultaneous Localization and Mapping (SLAM) är en lösning på detta problem. När flera enheter försöker lösa detta problem tillsammans använder de Samarbetande SLAM (C-SLAM), men detta är en mycket resurskrävande process. För att möjliggöra att resursbegränsade enheter, så som exempelvis små mobila robotar eller eXtended Reality (XR)-enheter, ska kunna köra C-SLAM föreslås en serverassisterar C-SLAM-arkitektur beräkningsbördan kan lyftas från dessa enheter till servern. I ett verkligt scenario kan sensorer vara felaktiga, enheter behandla sensordata felaktigt eller illvilliga aktörer injicera felaktig data i systemet. Därför undersöker detta arbete effekten av \emph{outliers} i Serverassisterade C-SLAM-algoritmer och presenterar två nya lösningar för en robust algoritm, baserad på robusta uppskattningar av enhetens initiala positioner. Denna lösning visar sig överträffa likartade lösningar i litteraturen både vad gäller uppskattningsnoggrannhet, vilket ger bättre uppskattningar av den verkliga enhetsbanor och beräkningsprestanda, vilket gör den lämplig för enheter med begränsade resurser.

Place, publisher, year, edition, pages
2023. , p. 84
Series
TRITA-EECS-EX ; 2023:768
Keywords [en]
SLAM, Robust Estimation, Multi-Device Algorithms
Keywords [sv]
SLAM, Robust uppskattning, Algoritmer för flera enheter
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-340709OAI: oai:DiVA.org:kth-340709DiVA, id: diva2:1818546
External cooperation
Ericsson AB
Supervisors
Examiners
Available from: 2023-12-18 Created: 2023-12-11 Last updated: 2024-08-12Bibliographically approved

Open Access in DiVA

fulltext(2059 kB)163 downloads
File information
File name FULLTEXT01.pdfFile size 2059 kBChecksum SHA-512
170d6b1710c29956512b29293372c76e8be484af87166ba885b18ea688b4ae38f2657303a5c3d5a59746e6a565436598610b1c970031fa30e2778c29ed629536
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 163 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 239 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf