Open this publication in new window or tab >>2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Research towards a fusion power plant encompasses numerous scientific and technological challenges. Plasma-material interactions are essential for energy and particle extraction, but present risks for the plasma-facing materials and impact plasma purity and performance. The so-called first wall needs to be able to withstand high energy and particle fluxes without the need for frequent maintenance. In sum, the plasma-materials interactions are crucial for the performance and safe operation of fusion reactors. This thesis focuses on fuel retention and erosion-deposition mechanisms, evaluating plasma-wall interactions with components from the JET tokamak equipped with the full-metal ITER-like wall (JET-ILW) and assessing the effects of fusion reactor environments on diagnostic mirror performance.
The work includes the first study of the beryllium (Be)-coated inner wall cladding tiles from JET, revealing Be spalling-off mechanisms and establishing a lower limit for deuterium (D) retention in these tiles. These findings support an extrapolated global fuel retention estimate for JET-ILW plasma-facing components (PFCs) relevant in view of the subsequent D-T operation, totaling 4.19 ⋅ 1023 D atoms (0.19 % of the injected D fuel) after the ILW-3 campaign. This thesis also includes an initiative to improve inter-comparability of fuel retention studies for JET’s PFCs. Studies on bulk Be limiters and tungsten (W) divertor tiles allowed for detailed analysis of co-deposited species, confirming generally low fuel retention and demonstrating H-D isotope exchange on surfaces after hydrogen fueling in the ILW-2 campaign. Comprehensive retention analysis of noble, seeded, and tracer gases in the PFCs indicates that nitrogen (N) is retained during JET operations, with rates correlated to N seeding. Additionally, trace amounts of injected gases were found to persist on PFC surfaces, while carbon (C) retention was low, confirming an absence of open C sources in JET-ILW. The comprehensive analysis of JET PFC enhances understanding of materials migration and fuel retention within the JET tokamak with the ILW.
The thesis further examines the impact of fusion environments on diagnostic mirrors. Experiments on ion irradiation compare single-crystal and polycrystalline molybdenum (Mo) mirrors, showing minimal performance differences. The effects of W and, for the first time, boron (B) on reflectivity are evaluated, with results indicating significant performance risks from deposits, especially from B in the short-wavelength range. Laboratory studies link surface damage to fuel retention, and an unique in situ JET experiment is introduced that assesses the retention on pre-damaged Mo mirrors under operational conditions.
Abstract [sv]
Forskning kring utveckling av fusionskraft har många vetenskapliga och tekniska utmaningar. Plasma-materialväxelverkan är nödvändig för energi- och partikelflöde men innebär samtidigt risker för plasmaexponerade material och påverkar plasmats renhet och prestanda. Den så kallade första väggen måste kunna motstå höga energi- och partikelflöden utan att kräva frekvent underhåll. Därför är plasma-materialväxelverken avgörande för fusionsreaktorers prestanda, driftsäkerhet och ekonomi. Denna avhandling fokuserar på bränsleansamling samt erosions- och depositionsmekanismer, och utvärderar plasma-väggväxelverkan genom studier av komponenter från JET-tokamaken med helt metallisk, ITER-liknande vägg (JET-ILW). Därtill studeras effekterna på prestanda hos diagnostiska speglar i fusionsmiljö.
Arbetet omfattar den första studien av de beryllium-belagda beklädnadsplattorna för den inre väggen (inner wall cladding tiles) från JET, den visar mekanismer för hur beryllium (Be) flagnar och fastställer en undre gräns för deuterium (D)-ansamling i dessa plattor. Dessa fynd stöder en extrapolerad uppskattning av den globala bränsleansamlingen i JET-ILW för plasmaexponerade komponenter (PFC), vilket är relevant inför den kommande D-T-driften, med en total ansamling av 4,19 ⋅ 1023 D-atomer (0,19 % av det insprutade D-bränslet) efter ILW-3-kampanjen. Avhandlingen inkluderar en undersökning för att förbättra jämförbarheten mellan bränsleansamlingsstudier för JET PFC. Studier på Be-limiters och volfram (W)-divertorplattor möjliggjorde en detaljerad analys av avsatta element, som bekräftar generellt låg bränsleretention och påvisar H-D-utbyte på ytor efter användning av väte under ILW-2-kampanjen. En omfattande analys av ansamlade gaser i PFC visar att kväve (N) bibehålls under JET-driften, med ansamlingsnivåer som korrelerar med N-injektionsmängderna. Dessutom påträffades spårmängder av injicerade gaser på PFC-ytorna, medan ansamling av kol (C) var låg, vilket bekräftar frånvaron av direkta C-källor i JET-ILW. Denna omfattande analys av JET PFC förbättrar förståelsen av materialmigration och bränsleansamling i JET-tokamaken med ILW.
Avhandlingen undersöker vidare hur fusionsmiljöer påverkar diagnostiska speglars prestanda. I experiment med jonbestrålning jämfördes enkristallina och polykristallina molybden (Mo)-speglar, där endast små prestandaskillnader observerades. Effekterna av W och, för första gången, bor (B) på speglarnas reflektivitet utvärderades, med resultat som indikerar betydande prestandarisker från avlagringar, särskilt från B i kortvågsområdet. Laboratoriestudier kopplar ytskador till bränsleretention, och ett unikt in situ-experiment i JET med förskadade Mo-speglar introduceras för att bedöma retention under driftsförhållanden.
Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. p. 73
Series
TRITA-EECS-AVL ; 2025:14
Keywords
Plasma-wall interaction, JET-ILW, erosion-deposition, fuel retention, diagnostic mirrors, Plasma-väggväxelverkan, JET-ILW, erosion-deposition, bränsleansamling, diagnostiska speglar
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-358303 (URN)978-91-8106-169-7 (ISBN)
Public defence
2025-02-05, https://kth-se.zoom.us/j/64462920278, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
2025-01-102025-01-092025-01-20Bibliographically approved