kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A framework for component ranking based on a data quality importance index: applications in power system asset management
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science. (QED-AM)ORCID iD: 0000-0002-4730-2095
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-2964-7233
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science. Svenska Kraftnät, Stockholm, Sweden.ORCID iD: 0000-0003-2025-5759
(English)Manuscript (preprint) (Other academic)
Abstract [en]

 Data-driven decision making is essential for efficient power system asset management. Faulty data causes distortions in component failure model estimations. This leads to inaccurate maintenance cost minimization and sub-optimal component replacements. In this paper, we review existing standards and frameworks related to data quality and asset management. We then study the sensitivity of a maintenance optimization model to the Weibull distribution shaping parameter and observe a non-linear relation. Based on this study, we propose using the Weibull shaping parameter as a data quality importance index to rank power system components in terms of data requirements. 

Keywords [en]
asset management, data quality, maintenance, framework, failure model
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-341406OAI: oai:DiVA.org:kth-341406DiVA, id: diva2:1821307
Note

Preprint submitted to Electric Power Systems Research

QC 20231220

Available from: 2023-12-19 Created: 2023-12-19 Last updated: 2024-01-05Bibliographically approved
In thesis
1. Data Importance in Power System Asset Management
Open this publication in new window or tab >>Data Importance in Power System Asset Management
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Betydelsen av data i förvaltningen av kraftsystemets tillgångar
Abstract [en]

The current shift towards a higher degree of data-driven decision making in power system asset management highlights the importance of asset data. This thesis identifies, investigates, and proposes methods for data-related research gaps that are encountered by asset managers. These research gaps are in data availability and data quality. 

It is challenging to generalize the data availability problem on an abstract level. Thus, data availability is studied through three different case studies. Each case study addresses a factor that contributes to data availability problems. Data censoring is modeled as a data quality problem using a Monte-Carlo simulation. Lack of access to and acquisition of data are studied through event tree analysis and multiphysics modelling. These case studies reveal that even in a low data availability environment, informed decision making is feasible. 

Monte-Carlo simulation techniques are powerful when analyzing the data quality problem. Asset data quality is studied based on two perspectives; namely, maintenance optimization and reliability evaluation. First, using random population studies shows that data quality can have a notable financial and technical impact on maintenance optimization. A critical finding is that missing data can lead to distortions in estimates of the optimal replacement time of a component. It is shown that there exists a certain threshold of missing data proportion beyond which maintenance optimization becomes unreliable. The specific percentage value of this threshold depends on the failure model parameters. Second, incorporating the data quality model in a reliability test system simulation shows that the impact on the annual estimation of system- and energy-oriented reliability indices is nearly non-existent.

Finally, this thesis introduces a method to rank component types based on data quality importance. The data quality importance (DQI) ranking is derived from the Weibull function’s sensitivity to data errors. This method indicates that distortions in Weibull parameters have a non-linear impact on maintenance optimization. This leads to a conclusion that investments in data quality must be allocated based on the DQI ranking of a certain component. Reaching the right level of data quality for a component leads to efficient decision making. 

Abstract [sv]

Den nuvarande övergången mot en högre grad av datadrivet beslutsfattande inom förvaltning av kraftsystem belyser vikten av tillgång till data. Denna avhandling identifierar och undersöker och föreslår metoder för datarelaterade forskningsluckor som kapitalförvaltare möter. Dessa forskningsluckor finns i datatillgänglighet och datakvalitet.

Det är utmanande att generalisera datatillgänglighetsproblemet på en abstrakt nivå. Datatillgänglighet studeras alltså genom tre olika fallstudier. Varje fallstudie tar upp en faktor som bidrar till datatillgänglighetsproblem.  Datacensurering modelleras som ett datakvalitetsproblem med hjälp av en Monte-Carlo-simulering. Bristande tillgång till och inhämtning av data studeras genom händelseträdsanalys och multifysisk modellering. Dessa fallstudier visar att även i en miljö med låg datatillgänglighet är välgrundat beslutsfattande möjligt.

Monte-Carlo simuleringstekniker är kraftfulla när man analyserar datakvalitetsproblemet.  Tillgångsdatakvalitet studeras utifrån två perspektiv; näm-ligen underhållsoptimering och tillförlitlighetsutvärdering.  För det första visar användning av slumpmässiga befolkningsstudier att datakvalitet kan ha en betydande ekonomisk och teknisk inverkan på underhållsoptimering.  En kritisk upptäckt är att saknad data kan leda till förvrängningar i uppskattningar av den optimala utbytestiden för en komponent. Det har visat sig att det finns en viss tröskel för andelen saknad data, bortom vilken underhållsoptimering blir opålitlig.  Det specifika procentvärdet för denna tröskel beror på felmodellens parametrar.  För det andra, att införliva datakvalitetsmodellen i en simulering av tillförlitlighetstestsystem visar att effekten på den årliga uppskattningen av system- och energiorienterade tillförlitlighetsindex är nästan obefintlig.

Slutligen introducerar denna avhandling en metod för att rangordna komponenttyper baserat på datakvalitetens betydelse.  Rankningen av datakvalitetens betydelse (DQI) härleds från Weibull-funktionens känslighet för datafel.  Denna metod indikerar att förvrängningar i Weibull-parametrar har en icke-linjär inverkan på underhållsoptimering. Detta leder till slutsatsen att investeringar i datakvalitet måste allokeras utifrån DQI-rankningen av en viss komponent.  Att nå rätt nivå av datakvalitet för en komponent leder till effektivt beslutsfattande.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. x, 60
Series
TRITA-EECS-AVL ; 2024:4
Keywords
Data availability, data quality, asset management, power systems, maintenance optimization, Datatillgänglighet, datakvalitet, tillgångsförvaltning, kraftsystem, underhållsoptimering
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-341407 (URN)978-91-8040-800-4 (ISBN)
Public defence
2024-01-29, Sal F3, Lindstedtsvägen 26, Stockholm, Sweden, 15:00 (English)
Opponent
Supervisors
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage
Note

QC 20240108

Available from: 2024-01-08 Created: 2024-01-05 Last updated: 2024-01-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Naim, WadihHilber, PatrikShayesteh, Ebrahim

Search in DiVA

By author/editor
Naim, WadihHilber, PatrikShayesteh, Ebrahim
By organisation
Electromagnetic Engineering and Fusion Science
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 96 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf