The purpose of this study is to investigate whether it is possible to automatically interpret theresults of Time-of-flight Elastic Recoil Detection Analysis (ToF-ERDA). And if so, find out if the automaticinterpretation is quicker and/or more accurate than the current approach that consists of manualanalysis. As an added bonus, it is hoped that using an automated technique will enable the identificationof previously undetectable elements.Two different methods were tested, a well-known clustering algorithm known as Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) for its capacity to handle high noise datasets. The other was an image segmentation algorithm known as You Only Look Once (YOLO) for itspattern recognition in abnormal shapes and how straightforward it is to train the algorithm withcustomized image sets.Even though the data was too noisy for HDBSCAN to handle, YOLO was able to quickly and effectivelyidentify most of the elements with just a set of 30 photos to train on. The flaw with YOLO was that inorder to gain the necessary data for the algorithm to train on, a manual input similar to the previousmethods was required. The methods used to navigate these problems and make use of all the data isdiscussed along with possible ways to enhance the clustering based method.
Syftet med denna studie är att undersöka om det är möjligt att automatiskt tolkaresultaten av Time-of-flight Elastic Recoil Detection Analysis (ToF-ERDA). Om så är fallet, ska vi ta reda påom den automatiska tolkningen är snabbare och/eller mer exakt än de konventionellatillvägagångssätten. Som en extra bonus hoppas vi att användningen av en automatiserad teknikkommer att möjliggöra identifiering av tidigare oidentifierbara element.Två olika metoder testades: en välkänd klusteringsalgoritm som kallas Clustering and HierarchicalDensity-Based Spatial Clustering of Applications with Noise (HDBSCAN) på grund av dess förmåga atthantera datamängder med högt brus, och en bildsegmenteringsalgoritm som heter You Only Look Once(YOLO) på grund av dess mönsterigenkänning i onormala former och hur enkelt det är att tränaalgoritmen med anpassade bilduppsättningar.Även om datamaterialet var för brusigt för att HDBSCAN skulle kunna hantera det, kunde YOLO snabbtoch effektivt identifiera de flesta elementen med endast en uppsättning av 30 foton att träna på.Problemet med YOLO var att för att få nödvändig data för att träna algoritmen krävdes en manuellinmatning liknande de traditionella metoderna. Det diskuteras också sätt att komma runt detta ochdärmed använda all data som tidigare erhållits med konventionella tekniker, samt sätt att förbättraklustringsprocessen.