kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Size stability and self-agglomeration of erythrocyte-derived membrane nanovesicles versus physiological extracellular vesicles
KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics. (Nonlinear Quantum Photonics)ORCID iD: 0000-0001-8661-6583
Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden.ORCID iD: 0000-0001-5885-8067
Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden. (Department of Clinical Sciences; Division of Reproduction)ORCID iD: 0000-0002-5245-7331
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0001-5678-5298
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Extracellular vesicles (EVs) and plasma membrane-derived exosome-mimetic nanovesicles demonstrate significant potential for drug delivery. Latter synthetic provides higher throughput over physiological EVs. However they face size-stability and self-agglomeration challenges in physiological solutions to be properly characterized and addressed. Here we demonstrate a fast and high-throughput nanovesicle screening methodology relying on dynamic light scattering (DLS) complemented by atomic force microscopy (AFM)measurements, suitable for the evaluation of hydrodynamic size instabilities and aggregation effects in nanovesicle solutions under varying experimental conditions and apply it to the analysis of bio-engineered nanovesicles derived from erythrocytes as well as physiological extracellular vesicles isolated from animal seminal plasma. The synthetic vesicles exhibit a significantly higher degree of agglomeration, with only 8 % of them falling within the typical extracellular vesicle size range (30-200 nm) in their original preparation conditions. Concurrent zeta potential measurements performed on both physiological and syntheticnanovesicles yielded values in the range of -17 to -22 mV, with no apparent correlation to their agglomeration tendencies. However, mild sonication and dilution were found to be effective means to restore the portion of EVs-like nanovesicles in synthetic preparations to values of 54% and 63%, respectively, The results illustrate the capability of this DLS-AFM-based analytical method for real-time, high-throughput and quantitative assessments of agglomeration effects and size instabilities in bioengineered nanovesicle solutions, providing a powerful and easy-to-use tool to gain insights to overcome such deleterious effects and leverage the full potential of this promising biocompatible drug-delivery carriers for a broad range of pharmaceutical applications.

Keywords [en]
Atomic force microscopy, detergent-resistant membrane vesicles, dynamic light scattering, physiological extracellular vesicles, self-agglomeration, size-stability, zeta potential.
National Category
Nano Technology
Research subject
Physics, Biological and Biomedical Physics
Identifiers
URN: urn:nbn:se:kth:diva-341652DOI: 10.48550/arXiv.2312.03554OAI: oai:DiVA.org:kth-341652DiVA, id: diva2:1822885
Note

QC 20231228

Available from: 2023-12-28 Created: 2023-12-28 Last updated: 2024-01-05Bibliographically approved
In thesis
1. Photoluminescence-based characterization of bioengineered nanovesicles and erbium emitters
Open this publication in new window or tab >>Photoluminescence-based characterization of bioengineered nanovesicles and erbium emitters
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In recent decades, photoluminescence properties of single molecules and ions have opened new possibilities for studies on smaller size scales, below the light-diffraction limit. In this thesis, the advantages of such single photon emitters were harnessed and studied mainly in the field of biophysics, but also, in investigations within solid state photonics. The first aspect encompassed studies on extracellular vesicles (EVs) and nanovesicles derived from red blood cell (RBC) membranes which were bioengineered for drug delivery applications. RBC-derived vesicles demonstrated high biocompatibility and low immunogenicity, offering superior production scalability over physiological EVs. However, thorough physical characterizations of such nanovesicles are yet to be developed. Such investigations are essential for their clinical deployment, for therapeutic and diagnostic purposes. Initially, the morphology and size-stability of vesicles were investigated by applying atomic force microscopy and dynamic light scattering. These studies demonstrated the size heterogeneity and agglomeration tendencies of the vesicles. Comparative studies on physiological EVs revealed a higher size stability, while RBC-produced vesicles showed about 50 % reversible agglomerations. Secondly, a dual-colour coincident fluorescent burst (DC-CFB) experimental analysis technique was developed. DC-CFB was then used to characterize and profile the cargo-loading yields of bioengineered nanovesicles, overcoming challenges related to their small size (below the diffraction limit), their inherent heterogeneity, and the presence of free, non-encapsulated cargoes. The developed methodology was then applied to explore the loading with relatively small single nucleotides (dUTP) as well as larger antibody (Ab) molecules, motivated by the prospective role of such EVs and EV-mimetic bioengineered vesicles as nanocarriers of therapeutic drugs. The studies demonstrated consistent average loading yields of around 14-20 % for both cargo types (dUTP and Ab) into both vesicle categories, i.e., EVs and RBC-derived vesicles. Additionally, the analysis capability of the DC-CFB technique at single-vesicle and single-molecule levels, afforded analyses of the number of loaded molecules inside each vesicle, and how this number varied with the vesicle size. On average, this number was found to be greater than two, for both cargo types. Overall, the developed techniques based on fluorescence single photon counting provided a comprehensive assessment of the drug loading properties of nanovesicles. Such bioengineered nanocarriers have a disruptive potential for pharmaceutical applications. The last part of the thesis investigates the realm of solid-state on-chip photon emitters. Specifically, it considers the integration of erbium ions, exhibiting photoluminescent emission in the telecommunication C-band, into thin film lithium niobate (TFLN) waveguides. An Er-ion implantation process compatible with integrated optical circuits in x-cut TFLN was developed and the erbium photoluminescence properties were investigated versus temperature. These preliminary studies provide a foundation for future integration of Er single photon emitters into TFLN-based photonic components.

Abstract [sv]

Under de senaste årtiondena har fotoluminescens-egenskaper hos enskilda molekyler och joner öppnat nya möjligheter till studier på mindre storleksskalor, under ljusdiffraktionsgränsen. I den här avhandlingen utnyttjades och studerades fördelarna med sådana enskilda foton-källor främst inom biofysik, men också för undersökningar inom fasta tillståndets fotonik. Det första aspekten omfattade studier av extracellulära vesiklar (EVs) och nanovesiklar, genererade från röda blodkroppars (RBC) membran, och utformade för applikationer rörande leverans av läkemedel i kroppen. De RBC-genererade vesiklarna uppvisade hög biokompatibilitet och låg immunogenicitet och erbjöd en överlägsen uppskalbarhet för produktion jämfört med fysiologiska EVs. Emellertid måste noggranna fysiska karakteriseringar av sådana nanovesiklar ännu utvecklas. Sådana undersökningar är nödvändiga för att i förlängningen kunna använda denna typ av vesiklar klinikst, för terapeutiska och diagnostiska ändamål. Inledningsvis undersöktes morfologin och storleksstabiliteten hos vesiklarna genom atomkraftsmikroskopi och dynamisk ljusspridning. Dessa studier visade på storleksheterogenitet och agglomereringstendenser hos vesiklarna. Jämförande studier av fysiologiska EVs avslöjade deras förhållandevis högre storleksstabilitet, medan RBC-producerade vesiklar uppvisade reversibla agglomerationer i omkring 50 % av fallen. För det andra utvecklades en experimentell analysmetod med tvåfärgs-avläsning av sammanfallande fluorescens-signaler (DC-CFB). Metoden användes sedan för att karakterisera och profilera molekylupptaget hos de bioteknologiskt framtagna nanovesiklarna. Därmed var det möjligt att hantera vesiklarnas ringa storlek (under diffraktionsgränsen), deras inneboende heterogenitet och närvaron av fria, icke-inkapslade molekyler. Den utvecklade metoden tillämpades därefter för att utforska upptaget i vesiklarna av relativt små nukleotider (dUTP) såväl som av större antikroppsmolekyl (Ab), motiverat utifrån en möjlig framtida användning av sådana EVs och EV-mimetiska vesiklar som nanobärare av terapeutiska läkemedel. Studierna visade genomgående genomsnittliga upptag runt 14-20 % för båda molekyl-typerna (dUTP och Ab), i både EVs och i de RBC-tillverkade vesiklarna. Dessutom möjliggjorde DC-CFB-tekniken analyser på enstaka-vesikel och enstaka-molekylnivå, av antalet upptagna molekyler inuti varje vesikel i förhållande till dess storlek. I genomsnitt var detta antal större än två för de båda upptagna molekyl-typerna. Sammantaget gav de utvecklade teknikerna, baserade på detektion av enstaka fluorescens--fotoner, en omfattande bedömning av kapaciteten för läkemedelsupptag hos nanovesiklar. Bioteknologiska nanotransportörer av detta slag har en betydande potential för farmaceutiska tillämpningar. Den sista delen av avhandlingen undersöker området för fasta tillståndets on-chip-fotonemitterare. Mer specifikt undersöks integrationen av erbiumjoner, som uppvisar fotoluminescerande emission i telekommunikations-C-bandet, i tunnfilmer av litiumniobat (TFLN) vågledare. En Er-jonimplanteringsprocess som är kompatibel med integrerade optiska kretsar I x-delat TFLN utvecklades och erbiums fotoluminescensegenskaper undersöktes i förhållande till temperaturen. Dessa inledande studier utgör en grund för framtida integration av enskilda fotonemitterare av Er i TFLN-baserade fotoniska komponenter.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2023:64
Keywords
Bioengineered nanovesicles, Coincident fluorescent burst analysis, Drug loading, Erbium emitters, Lithium niobate, Photoluminescence., Bioingenjörskonstruerade nanovesiklar, Analys av sammanfallande fluorescerande blossteknik, Läkemedelslastning, Erbium-emitterare, Lithium niobate, Fotoluminiscens.
National Category
Biophysics Nano Technology
Research subject
Biological Physics; Physics, Optics and Photonics
Identifiers
urn:nbn:se:kth:diva-341884 (URN)978-91-8040-797-7 (ISBN)
Public defence
2024-02-02, Pärlan, Albano, Hus 1, Plan 6, Stockholm, 09:30 (English)
Opponent
Supervisors
Note

QC 2024-01-08

Available from: 2024-01-08 Created: 2024-01-05 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Sanaee, MaryamToprak, MuhammetGallo, Katia

Search in DiVA

By author/editor
Sanaee, MaryamRonquist, K. GöranMorrell, Jane M.Toprak, MuhammetGallo, Katia
By organisation
Nanostructure PhysicsBiomedical and X-ray Physics
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf