kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Smartphone Sensor Data for Physical Activity Monitoring and Analysis
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

As awareness of health risks associated with a sedentary lifestyle is raised, the demands fortechnological tools to help track one’s physical activity levels grow as well. A technologicalconcept that could be used to aid in this issue is human activity recognition (HAR), whichmaps signal data to recognisable human activity. The aim of this study is to explore thepossibilities of creating a method for utilising data collected from smart phone sensors totrack the type of human activity conducted (such as walking or running) and the quantity ofit measured in steps. This study consists of two main parts - classification and quantification.The classification part (HAR) looks at classifying the activities running, walking and cycling. Itis achieved through the machine learning algorithm SVM (support vector machine). Thequantification part comes in the form of a step counter that comes in two versions - onethat calculates the steps in a pre-recorded data, and another that is implemented as anAndroid application to calculate steps live. In both of these programs, the acceleration datais processed and the steps are then validated. The machine learning part achieved a finalaccuracy of 95% while the step counters scored 96% and 94%, respectively.

Abstract [sv]

I takt med ökande medvetenhet om hälsorisker förknippade med stillasittande livsstil, ökaräven efterfrågan på tekniska verktyg som kan spåra fysisk aktivitet. Ett tekniskt koncept somkan appliceras i denna fråga är Human Activity Recognition (HAR), som använder signaldataoch klassificerar den till mänsklig aktivitet. Syftet med denna studie är att utforskamöjligheterna att använda insamlade data för att skapa en metod att spåra typen avmänsklig aktivitet som utförs (t.ex. promenad eller jogging) och hur man kan mätaaktivitetsnivån i steg. Denna studie består av två huvuddelar, klassificering och kvantifiering.Klassificeringsdelen (HAR) klassificerar aktiviteterna springa, gå och cykla. Det uppnås medhjälp av maskininlärningsmodellen SVM (support vector machine). Kvantifieringsdelenkommer i form av en stegräknare som finns i två versioner - ena beräknar stegen i enförinspelad accelerationsdata medan den andra implementeras som en mobilapp för attberäkna stegen i realtid. I båda dessa program bearbetas accelerationsdata och stegenvalideras sedan. SVM klassificeringen uppnådde en slutlig noggrannhet på 95% medanstegräknarna hade nogrannheterna 96% respektive 94%.

Place, publisher, year, edition, pages
2023. , p. 543-550
Series
TRITA-EECS-EX ; 2023:183
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-341771OAI: oai:DiVA.org:kth-341771DiVA, id: diva2:1823465
Supervisors
Examiners
Projects
Kandidatexjobb i elektroteknik 2023, KTH, StockholmAvailable from: 2024-01-02 Created: 2024-01-02

Open Access in DiVA

fulltext(211487 kB)456 downloads
File information
File name FULLTEXT01.pdfFile size 211487 kBChecksum SHA-512
69786101c351a58f7bd524c3aeee40c661028b577366c4a725033372b88c624c87c2183b6acca2d3d43bbd2bb2f3942326c69263e70c99cf1db027ce9c4e9ae2
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 456 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 189 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf