kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Explainable Machine Learning in Cardiovascular Diagnostics
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

The major challenges in implementing machine learning models in medical applications stemfrom ethical and accountability concerns, which arise from the lack of insight and understandingof the models' inner workings and reasoning. This opaqueness has resulted in the emergenceof a new subfield of machine learning called Explainability, which aims to develop and deploymethods to gain insight into how input data is weighted and propagated through a machinelearning algorithm.This paper aims to examine the viability of certain explainability methods when applied tocardiovascular diagnostics. The machine learning models that were implemented andsubsequently evaluated include Logistic Regression, Decision Trees, and Random Forests.Methods such as Feature Importance plots, Lasso Regularization (L1 norm), and SequentialFeature Selection were applied to achieve better interpretation of these models.The results indicate that different models and forms of regularization prioritize various inputfeatures more heavily than others, even when trained on identical data. A consistent findingacross all models, except for Logistic Regression with Lasso regularization, was the ability tosignificantly reduce the dimensionality of the input feature space without substantial loss inmodel test performance. This allows for the isolation of specific features, thereby enhancinginsight into and improving a model's interpretability.Systolic and diastolic blood pressure along with cholesterol values were the two main inputfeatures that determined a patients cardiovascular diagnosis.

Abstract [sv]

De största utmaningarna vid implementering av maskininlärningsmodeller i medicinskatillämpningar härrör från etiska och ansvarsfrågor, som uppstår på grund av bristande insikt ochförståelse för modellernas inre funktion och resonemang. Denna opakhet har resulterat iframväxten av en ny underkategori inom maskininlärning kallad Förklarbarhet (Explainability),som syftar till att utveckla och tillämpa metoder för att få insikt i hur indataviktning och spridningsker genom en maskininlärningsalgoritm.Denna studie ämnar undersöka genomförbarheten av vissa förklarbarhetsmetoder när detillämpas på kardiovaskulär diagnostik. De maskininlärningsmodeller som implementerades ochutvärderades inkluderade logistisk regression, beslutsträd och random forests. Metoder såsomFeature Importance-diagram, Lasso-regularisering (L1-norm) och sekventiell egenskapsurvaltillämpades för att uppnå bättre tolkning av dessa modeller. Resultaten visar att olika modelleroch former av regularisering prioriterar olika indatavariabler mer än andra, även när de tränaspå identiska data. En konsekvent upptäckt för alla modeller, förutom logistisk regression medLasso-regularisering, var förmågan att avsevärt minska dimensionaliteten i indatavariabelrymden utan betydande förlust i modelltestprestanda. Detta möjliggör isolering avspecifika variabler, vilket förbättrar insikten och tolkningsbarheten för en modell. Systoliskt ochdiastoliskt blodtryck samt kolesterolvärden var de två huvudsakliga indatavariablerna somavgjorde en patients kardiovaskulära diagnos.

Place, publisher, year, edition, pages
2023. , p. 551-563
Series
TRITA-EECS-EX ; 2023:184
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-341772OAI: oai:DiVA.org:kth-341772DiVA, id: diva2:1823466
Supervisors
Examiners
Projects
Kandidatexjobb i elektroteknik 2023, KTH, StockholmAvailable from: 2024-01-02 Created: 2024-01-02

Open Access in DiVA

fulltext(211487 kB)464 downloads
File information
File name FULLTEXT01.pdfFile size 211487 kBChecksum SHA-512
69786101c351a58f7bd524c3aeee40c661028b577366c4a725033372b88c624c87c2183b6acca2d3d43bbd2bb2f3942326c69263e70c99cf1db027ce9c4e9ae2
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 464 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 347 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf